

Corporate Headquarters

t: 517.321.3331

Lansing, Michigan 3340 Ranger Road, Lansing, MI 48906 f: 877.884.6775 Michigan Locations
Berkley Oak Park
Grand Rapids Lansing

June 4, 2024

Ms. Janet Michaluk Michigan Department of Environment, Great Lakes, and Energy (Lansing) 525 West Allegan P.O. Box 30242 Lansing, Michigan 48909-7742

Re: Phase II Environmental Site Assessment of the 108 Adams Street Site Located at 108 Adams Street, 101-109 North Jefferson Avenue and 501 Columbus Avenue (formerly 111 North Madison Avenue)

Bay City, Michigan

PM Project No. 01-14761-0-0002

Dear Ms. Michaluk:

PM Environmental (PM), a Pinchin Company, completed a Phase II Environmental Site Assessment (ESA) of the 108 Adams Street Site located at 108 Adams Street, 101-109 North Jefferson Avenue, and 501 Columbus Avenue, Bay City, Bay County, Michigan (hereafter referred to as the "subject property"). This Phase II ESA was conducted to assess eight areas of concern (Area A through Area H) identified in the Sampling and Analysis Plan prepared for the subject property by PM in June 2023 (June 2023 SAP). This Phase II ESA Report summarizes the subsurface investigation activities conducted, the geology encountered, and the sample analytical results.

THIS REPORT WAS PREPARED FOR THE EXCLUSIVE USE OF MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY, MICHIGAN STATE HOUSING DEVELOPMENT AUTHORITY, AND BAY CITY HOUSING COMMISSION, EACH OF WHOM MAY RELY ON THE REPORT'S CONTENTS.

SUBJECT PROPERTY INFORMATION AND BACKGROUND

The subject property consists of six parcels (Parcel IDs: 160-028-178-001-00, 160-028-178-005-00, 160-028-178-004-00, 160-028-178-003-00, 160-028-178-002-00, and 160-028-251-003-00) totaling 3.77 acres and is bound to the north by 11th Street, to the east by North Madison Avenue, to the south by Columbus Avenue, and to the west by Adams Street, with North Jefferson Street bisecting the property into eastern and western portions in Bay City, Michigan (Figure 1). The eastern portion (currently 501 Columbus Avenue, formerly 111 North Madison Avenue) is developed with a 17,000-square foot building in the northern portion and a 1,728-square foot dwelling and 280-square foot garage in the southwestern portion. The western portion (108 Adams Street and 101-109 North Jefferson Street) is developed with an approximately 450square foot warming shed in the northern portion, an 1,823-square foot restaurant in the central portion, an approximately 100-square foot shed in the eastern portion, and a 30,000-square foot open-air market space in the western portion (Figure 2). Groomed grass and landscaped areas are present surrounding the structures in the eastern portion, in the southeastern portion of the western portion, and in the rights-of-ways (ROWs), with asphalt and concrete pavement throughout the remainder of the property. The subject property is currently vacant with no current business operations.

Environmental & Engineering Services Nationwide

ENVIRONMENTAL SERVICES

BUILDING ARCHITECTURE, ENGINEERING & SCIENCE

INDUSTRIAL HYGIENE SERVICES

BROWNFIELDS & ECONOMIC INCENTIVES CONSULTING

PHASE II ENVIRONMENTAL SITE ASSESSMENT

108 Adams Street Site

108 Adams Street, 101-109 North Jefferson Avenue and 501 Columbus Avenue (formerly 111 North Madison Avenue) Bay City, Michigan PM Project Number 01-14761-0-0002

Prepared for:

Michigan Department of Environment, Great Lakes, and Energy (Lansing)

525 West Allegan P.O. 30242 Lansing, Michigan 48909-7742

Prepared by:

PM Environmental, a Pinchin Company 4080 West Eleven Mile Road Berkley, Michigan 48072

Know Your Risk.
Take Control.
Work with the Experts.

www.pmenv.com

The historical use of the subject property is summarized below, and the provided Table summarizes each respective parcel and corresponding area of concern investigated by the Phase II ESA:

Eastern Portion

This property was developed prior to 1870 with the current dwelling in the southwestern portion, with a school building constructed in the northern portion and several dwellings and associated outbuildings in the eastern, southeastern, southern, and western portions by 1882. The school building was demolished between at least 1938 and 1955 when the current YMCA building was constructed. The eastern, southeastern, southern, and western dwellings and associated outbuildings were demolished at various times between 1970 and 1986. This property was occupied by residential and academic and/or community center operations from the late 1880s to 2015, has been vacant since that time.

Western Portion

This property was developed prior to 1886 with a light and power plant building and associated transformer substation in the northeastern portion, with several dwellings and associated outbuildings constructed in the southeastern, southwestern, and western-central portions and lumber sheds and a wood office in the western and northwestern portions, respectively, by 1912. The plant, wood office, and lumber sheds were demolished by 1925 when a portion of the current open air market structure was constructed, with an addition constructed by 1950. The current restaurant building was constructed in 1937, and the current warming shed was constructed between 1970 and 1973. The dwellings and associated outbuildings were demolished at various times between 1966 and 2012. The current storage shed was constructed between 2009 and 2012. This property was occupied by power plant/substation and small-scale lumber yard operations from the late 1880s to the 1920s, residential from the late 1880s to various times between 1966 and 2012, restaurant operations from 1937 to 2020, and open market and temporary ice-skating rink operations since 1925.

Parcel ID	Address	Acreage	Portion of Subject Property	Area of Concern
160-028-178-001-00	108 Adams Street	1.59 Acres	Western Portion	Area C and Area E
160-028-178-005-00	101 North Jefferson Street	0.07 Acres	Western Portion	None
160-028-178-004-00	105 North Jefferson Street	0.11 Acres	Western Portion	None
160-028-178-003-00	107 North Jefferson Street	0.05 Acres	Western Portion	None
160-028-178-002-00	109 North Jefferson Street	0.06 Acres	Western Portion	Area E

	501	1.81	Eastern Portion	Area A
160-028-251-003-00	Columbus	Acres		
	Avenue			

PREVIOUS SITE INVESTIGATIONS

PM reviewed the following previous environmental reports for the subject property. Relevant figures and tables from the 2017 and 2020 site investigations are included in Appendix A.

Property Address	Name of Report	Date of Report	Company that Prepared Report	
108 Adams Street	Phase I Environmental Site Assessment (ESA)	6-16-2020	PM	
106 Adams Street	Baseline Environmental Assessment (BEA)	8-13-2020	FIVI	
111 North Madison	Phase I ESA	4-18-2016		
Avenue and 501	Phase II ESA	5-26-2016		
Columbus Avenue	Phase II ESA	10-26-2017	AKT Peerless (AKT)	
(currently 501 Columbus Avenue)	Phase I ESA	11-9-2017		
109 North Jefferson Avenue	Phase I ESA	8-10-2023	PM	

108 Adams Street

At the time of the 2020 Phase I ESA, this property was occupied by the current open-air market and vacant restaurant. Recognized Environmental Conditions (RECs) were identified associated with the following:

- Historical transformer substation operations and associated potential for contamination;
- Former dwellings that were demolished between 1912 and 1925 and associated potential for demolition fill to be present in the dwelling basements; and
- Former east adjoining dry cleaning operations.

To assess these RECs, PM completed subsurface investigation activities in July 2020 that included the advancement eight soil borings (SB-1 through SB-8), installation of one temporary in-boring soil gas sampling point (SB-8/SG-1), and collecting 13 soil samples and one soil gas sample for laboratory analysis of volatile organic compounds (VOCs), polynuclear aromatic compounds (PNAs), polychlorinated biphenyls (PCBs), and Michigan 10 metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc), or some combination thereof.

Concentrations of phenanthrene, mercury, and/or selenium were detected in several soil samples exceeding the Part 201 Residential and Nonresidential Drinking Water Protection (DWP) and/or Groundwater Surface Water Interface Protection (GSIP) cleanup criteria and/or the EGLE Residential and Nonresidential Volatilization to Indoor Air Pathway (VIAP) screening levels. No other concentrations of target analytes were detected in any of the soil and soil gas samples exceeding laboratory method detection limits (MDLs), the Statewide Default Background Levels (SDBLs, applicable to metals in soil only), the most restrictive Part 201 Residential cleanup criteria, and/or the most restrictive EGLE Residential VIAP screening levels.

Based on these analytical results, a BEA was submitted to the EGLE on behalf of the Bay City Housing Commission on October 14, 2020 (BEA ID: 0900519-BEA-1).

501 Columbus Avenue and 111 North Madison Avenue

At the time of the 2016 and 2017 Phase I ESAs, the eastern portion was occupied by the current vacant YMCA and dwelling. RECs were identified in 2016 associated with 1) a suspect pipe/potential orphan underground storage tank (UST); 2) potential for foundry fill to be present onsite; and 3) former east adjoining gas dispensing operations, and a REC was identified in 2017 associated with the documented metal contamination in soil (discussed below) exceeding the Part 201 Residential and Nonresidential cleanup criteria at 111 North Madison Avenue and associated 'facility' status.

Site investigation activities completed in May and October 2017 included the completion of a geophysical survey using ground penetrating radar (GPR), advancement of 13 soil borings (B-1 through B-13) and the collection of 13 soil samples for laboratory analysis of VOCs, PNAs, Michigan 10 Metals, or some combination thereof.

Concentrations of chromium, mercury, selenium, and/or lead were detected in several soil samples exceeding the Part 201 Residential and Nonresidential DWP and/or GSIP cleanup criteria and/or the EGLE Residential VIAP screening levels. No other concentrations of target analytes were detected in any of the soil and soil gas samples exceeding laboratory MDLs, the SDBLs, the most restrictive Part 201 Residential cleanup criteria, and/or the most restrictive EGLE Residential VIAP screening levels.

109 North Jefferson Avenue

At the time of the August 2023 Phase I ESA, this property consisted of vacant land. One REC was identified associated with the contamination and associated facility status at 108 Adams Street and associated potential for vapor encroachment onto this property. No onsite RECs were identified.

SAMPLING AND ANALYSIS PLAN (SAP)

At the request of the EGLE, PM prepared a Sampling and Analysis Plan (SAP) dated June 14, 2023 (addendums prepared on November 1 and December 18, 2023), which detailed objectives to further assess areas of known contamination identified in previous site investigations, evaluate environmental concerns not previously investigated, and determine appropriate response activities or due care measures needed to meet MSDHA requirements pertaining to the proposed redevelopment.

Eight areas of concern (Areas A through H) were identified where investigation was required, and the following SAP objectives were established:

Area A: Advance nine (9) soil borings and collect sixteen (16) soil samples, install and sample up to two (2) temporary monitoring wells to replicate and evaluate the original location where lead was identified above direct contact criteria (AKT B-8), evaluate the lateral extent of lead impact in soils surrounding this location, evaluate shallow fill that was not

sampled during previous investigations at AKT B-1, and determine the southern, southwestern, and southeastern extent of the shallow fill soils.

- **Area B:** Advance three (3) soil borings and collect six (6) soil samples in effort to replicate the original location where mercury was identified above VIAP screening level at AKT B-11 and to evaluate the lateral extent of mercury impact in soils surrounding this location.
- **Area C:** Advance six (6) soil borings and collect twelve (12) soil samples, install and sample up to two (2) temporary monitoring wells to evaluate for the presence of contamination associated with the former power plant.

The November and December 2023 SAP addendums summarized objectives to further assess Area C, which included the advancement of nine (9) soil borings and the collection of 13 soil samples for laboratory analysis of arsenic.

- **Area D:** Conduct a Ground-Penetrating Radar (GPR) survey to determine whether orphan fuel oil USTs may be present. Advance two (2) soil borings and collect four (4) soil samples, install and sample up to two (2) temporary monitoring wells to evaluate a former (presumed hydraulic) scale, the potential for fuel oil contamination, and historical fill soils.
- **Area E:** Advance eight (8) soil borings and collect fifteen (15) soil samples, install and sample one (1) temporary monitoring wells to evaluate for the presence of contamination in fill material within the former dwelling basement areas and in soils beneath and adjacent to the basement areas.
- **Area F:** Advance three (3) soil borings and collect six (6) soil samples, install and sample up to three (3) temporary monitoring wells to evaluate for the presence of contamination in fill material within the former basement areas.
- **Area G:** Advance six (6) soil borings and collect twelve (12) soil samples, install and sample up to two (2) temporary monitoring wells to evaluate groundwater conditions, and install and sample two in-boring soil gas points to evaluate for the presence of contamination associated with the former dry-cleaning operations.
- **Area H:** Advance nine (9) soil borings and collect fourteen (14) soil samples, install and sample up to five temporary monitoring wells to evaluate for the presence of contamination in fill material, and to determine if asbestos (not previously sampled; soil only) may be present within fill soils in the former building/basement areas on the western portion of the property.

The June 2023 SAP was approved by the EGLE on June 16, 2023, and the subsequent addendums were approved on November 1 and December 20, 2023. These SAPs are on file with EGLE.

CURRENT SITE INVESTIGATIONS

Prior to the commencement of field activities, MissDig, a utility locating service, was contacted to locate utilities on or adjacent to the subject property. Utilities were marked by the respective utility companies where they entered or were located adjacent to the subject property (Figures 2 and 3). Additionally, a geophysical survey investigation utilizing GPR was conducted to clear the proposed soil boring locations of private subsurface utilities.

Geophysical Survey

On August 25, 2023, TerraProbe Environmental, Inc. (TP) was contracted by PM to complete a GPR survey on the subject property in an attempt to locate orphan USTs in and near the vacant restaurant building. Additionally, TP cleared all of the soil boring locations of private subsurface utilities prior to installation with TP. No limitations were encountered during the completion of the GPR survey. TP did not detect any anomalies indicative of the presence of orphan USTs.

The GPR survey area is depicted on Figure 2. TP's GPR Summary Report is included in Appendix B.

Subsurface Investigations

On August 21-25, November 8, 2023, and January 23, 2024 PM completed subsurface investigation activities to assess eight areas of concern (Area A through Area H) identified in the June 2023 SAP, which consisted of the advancement of 55 soil borings (A-1 through A-9, B-1 through B-3, C-1 through C-14 and C-4R, D-1 and D-2, E-1 through E-8, F-1 through F-3, G-1 through G-6 and H-1 through H-9), installation of two temporary in-boring soil gas points (G-1/TSG-1 and G-2/TSG-2), and the collection of 91 soil samples and two soil gas samples for laboratory analysis of VOCs, PNAs, PCBs, diesel-range organics (DRO), Michigan 10 Metals, and asbestos, or some combination thereof.

The table below includes a summary of the soil borings advanced between August 2023 and January 2024.

This Space Intentionally Left Blank

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Sample Section (justification)	
	A-1 (10.0)	5.0-6.0 and 9.0-10.0			Soil: Samples collected from the interval of the previous exceedance and from a deeper interval for vertical delineation. Groundwater: Not encountered.	
	A-2 (10.0)	0.5-1.5	Lead	Replicate and delineate Groundwater: Not encount	and delineate	Soil: Sample collected from the gravelly sand-sandy clay interface based on the lack of field evidence of contamination. Groundwater: Not encountered.
	A-3 (10.0)	5.0-6.0 and 9.0-10.0		previous lead exceedance	Soil: Samples collected from the	
Area A	A-4 (10.0)	5.0-6.0 and 9.0-10.0			interval of the previous exceedance and from a deeper interval for vertical delineation.	
	A-5 (10.0)	5.0-6.0 and 9.0-10.0			Groundwater: Not encountered.	
	A-6 (10.0)	0.5-1.5 and 4.5-5.5	VOCs.	Evaluate previously documented		
	A-7 (10.0)	1.0-2.0 and 5.0-6.0	PNAs, PCBs, DRO, and		Soil: Samples collected from geologic interfaces based on the lack of field evidence of	
	A-8 (10.0)	1.5-2.5	Michigan 10 Metals	shallow fill material	contamination. Groundwater: Not encountered.	
	A-9 (10.0)	0.5-1.5 and 4.5-5.5	เทษเสเร			
Area B	B-1 (5.0) B-2	1.0-2.0	Moroury	Replicate and laterally delineate	Soil: Samples collected from the interval of the previous	
Alea B	(5.0) B-3 (5.0)	1.0-2.0	Mercury	previous mercury exceedance	exceedance. Groundwater: Not encountered.	

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Sample Section (justification)
	C-1 (20.0) C-2 (20.0) C-3 (20.0) C-4* (20.0)	4.0-5.0 0.5-1.5 and 4.0-5.0 0.5-1.5 and 4.5-5.5 0.5-1.5 and 3.5-4.5 1.0-2.0 and 14.0-15.0	VOCs, PNAs, PCBs, DRO, and Michigan 10 Metals	Assess the historical power plant and substation operations	Soil: Samples collected from geologic interfaces and/or from the bottom of the soil borings based on the lack of field evidence of contamination. Groundwater: Not encountered.
Area C	C-6* (20.0)	0.5-1.5 7.0-8.0 and 14.0-15.0			Soil: Samples collected from the intervals with the highest PID readings beneath the surface (4.6 and 2.8 ppm) and from the bottom of the boring. Groundwater: Not encountered.
	C-4R (8.0) C-7 (8.0) C-8 (8.0) C-9 (8.0)	0.5-1.5 and 4.5-5.5	Arsenic	Delineate arsenic exceedance at C-3	Soil: Samples collected from the shallow interval of previous exceedances and from a deeper interval for vertical delineation. Groundwater: Not encountered.
	C-10 (2.0) C-11 (2.0) C-12 (2.0) C-13 (2.0) C-14 (2.0)	1.0-1.5	Arsenic	Delineate arsenic exceedances at C-7 and C-9	Soil: Samples collected from the shallow interval for horizontal delineation. Groundwater: Not encountered.
Area D	D-1 (15.0) D-2 (15.0)	3.5-4.5 and 11.0-12.0 1.5-2.5 and 11.5-12.5	VOCs, PNAs, PCBs, DRO, and Michigan 10 Metals	Assess potential former fuel oil use and potential fill material	Soil: Samples collected from geologic interfaces and/or form the bottom of the soil borings based on the lack of field evidence of contamination. Groundwater: Not encountered.

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Sample Section (justification)	
	E-1 (15.0)	4.5-5.5 and 7.0-8.0 4.5-5.5				
	E-2 (15.0)	and 9.5-10.5				
	E-3 (15.0)	4.5-5.5 and 10.5-11.5				
Area E	E-4 (15.0)	4.5-5.5 and 8.5-9.5	PNAs, DRO, Michigan 10 Metals, and	Assess potential fill	Soil: Samples collected from geologic interfaces based on the lack of field evidence of	
	E-5 (15.0)	4.5-5.5 and 6.0-7.0	asbestos	material	contamination. Groundwater: Not encountered.	
	E-6 (15.0)	1.0-2.0 and 4.5-5.5				
	E-7 (15.0)	4.5-5.5				
	E-8 (15.0)	4.5-5.5 and 7.0-8.0				
	F-1 (15.0)	3.5-4.5 and 14.0-15.0	VOCs, PNAs,	Assess potential fill material	Soil: Samples collected from geologic interfaces and/or form the bottom of the soil borings based on the lack of field evidence of contamination.	
Area F	F-2 (15.0)	3.5-4.5 and 10.5-11.5	PCBs, DRO, Michigan 10 Metals, and			
	F-3 (15.0)	0.5-1.5 and 4.5-5.5	asbestos		Groundwater: Not encountered.	
	G-1/TSG-1 (15.0)	Soil: 4.0-5.0 and 14.0-15.0	Soil: VOCs	Assess	Soil: Samples collected from geologic interfaces and/or from the bottom of the soil borings based on the lack of field	
		Soil Gas: 4.5	and PNAs			
	G-2/TSG-2 (15.0)	Soil: 0.5-1.5 and 9.0-10.0 Soil Gas:	Soil Gas: VOCs		evidence of contamination. Groundwater: Not encountered. Soil Gas: Sampled.	
Area G	G-3 (15.0)	5.0 1.5-2.5 and 9.5-10.5		former dry cleaner operations	Soil: Samples collected from geologic interfaces and/or form the bottom of the soil borings based on the lack of field evidence of contamination. Groundwater: Not encountered.	
	G-4 (15.0)	1.5-2.5 and 10.0-11.0	VOCs and			
	G-5 (16.0)	3.5-4.5 and 10.0-11.0	PNAs			
	G-6 (15.0)	1.5-2.5 and 14.0-15.0				

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Sample Section (justification)
	H-1 (15.0)	1.5-2.5 and 4.0-5.0			
	H-2 (15.0)	1.5-2.5			
	H-3 (15.0)	4.5-5.5			
	H-4 (15.0)	1.0-2.0 and 4.5-5.5	\/OC-	Assess potential fill material	
Area H	H-5 (15.0)	1.5-2.5 and 7.5-8.5	VOCs, PNAs, PCBs, DRO, Michigan 10 Metals, and asbestos		Soil: Samples collected from geologic interfaces based on the lack of field evidence of
	H-6 (15.0)	1.5-2.5 and 4.5-5.5			contamination. Groundwater: Not encountered.
	H-7 (15.0)	0.5-1.5 and 4.0-5.0			
	H-8 (15.0)	0.5-1.5 and 4.5-5.5			
	H-9 0.5-1.5 and 4.5-5.5				

ppm: Parts Per Million

The soil boring/temporary soil gas sample locations are depicted on Figures 3A through 3H and 4.

Subsurface Investigations Techniques and QA/QC Procedures

The soil borings were advanced to the desired depth using a Geoprobe® drill rig. Soil sampling was performed for soil classification, verification of subsurface geologic conditions, and for investigating the potential and/or extent of soil and/or groundwater contamination at the subject property. Soil samples were generally collected on a continuous basis using a 5-foot long macrocore sampler. Soil boring logs are included in Appendix C.

During drilling operations, the drilling equipment was cleaned to minimize the possibility of cross contamination. These procedures included cleaning equipment with a phosphate free solution (i.e., Alconox®) and rinsing with distilled water after each sample collection. Drilling and sampling equipment was also cleaned in this manner prior to initiating field activities.

Soil collected from 1-foot sample intervals was screened using a photoionization detector (PID) to determine if VOCs were present. Soil from specific depths was placed in plastic bags and allowed to volatilize. The headspace within each bag was then monitored with the PID, which can detect trace levels of organic compounds in the air space within the plastic bag. The soil sample was collected from the soil boring based upon the highest PID reading, visual/olfactory evidence, a change in geology, and/or source depth. The soil sample for VOC analysis was preserved with

^{*}Due to a chain of custody error, samples collected from C-4 (0.5-1.5 and 3.5-4.5 feet bgs), C-5 (1.0-2.0 and 14.0-15.0 feet bgs), and C-6 (0.5-1.5 and 7.0-8.0 feet bgs) were discarded by the laboratory prior to analysis.

methanol in accordance with United States Environmental Protection Agency (EPA) Method 5035 modified.

The soil samples were placed in appropriately labeled containers and/or sanitized glass jars provided by the laboratory, then placed in an ice-packed cooler and transported under chain of custody procedures for laboratory analysis within applicable holding times to the EGLE Environmental Laboratory in Lansing, Michigan.

The soil gas sampling was completed in general accordance with the guidelines established in the May 2013 EGLE Guidance Document for the Vapor Intrusion Pathway, which included the quality assurance/quality control (QA/QC) procedures outlined below.

The in-boring soil gas sampling points were installed per manufacturer specifications within the annulus of the borehole advanced with the Geoprobe® drill rig or hand auger equipped with a stainless-steel bucket. Approximately 6-inches of sand pack was installed at the bottom of the desired sample depth and a ceramic filter sample point attached to ¼" inert Teflon tubing was lowered into the borehole which was followed by the installation of an additional 6-inch layer of sand pack above the sample point. Bentonite was installed above the sand pack and hydrated to create a chemically resilient, low-permeability, flexible seal to prevent the exchange of atmospheric air with the soil gas and to maximize the representativeness of the sample. A minimum of 45 minutes was allowed to elapse after installation to allow equilibration of the subsurface soil vapor prior to sampling. Soil gas field logs are included in Appendix D.

The soil gas samples for VOC analysis were collected using 1-liter canisters regulated with a flow rate of 200 ml/minute and transported under chain of custody procedures for laboratory analysis within applicable holding times to the EGLE Environmental Laboratory.

Upon completion of the investigation, soil gas sampling materials were removed, and the soil borings were abandoned by placing the soil cuttings back into the borehole, filling the void with bentonite chips, hydrating the chips, resurfacing and returning the area to its pre-drilling condition.

Deviations from the SAP

The site investigation activities proposed in the June 2023 SAP and associated addendums included 1) geophysical survey for potential orphan fuel oil USTs using GPR; 2) advancement of up to 55 soil borings; 3) installation of up to 17 temporary monitoring wells; 4) installation of two temporary in-boring soil gas points; and 5) the collection of up to 91 soil samples, 17 groundwater samples, and two soil gas samples for laboratory analysis of VOCs, PNAs, PCBs, DRO, Michigan 10 Metals, and/or asbestos.

However, no groundwater was encountered during drilling activities and therefore, no groundwater samples were collected for laboratory analysis. Additionally, and as noted above, samples collected from C-4 (0.5-1.5 and 3.5-4.5 feet bgs), C-5 (1.0-2.0 and 14.0-15.0 feet bgs), and C-6 (0.5-1.5 and 7.0-8.0 feet bgs) were discarded by the laboratory prior to analysis due to a chain of custody error.

These SAP deviations do not represent significant limitations that hindered PM's ability to assess Areas A through H.

GEOLOGY/HYDROGEOLOGY

Based on a review of PM's soil boring logs, the soil stratigraphy generally consists of gravelly sand to depths between 0.5 and 4 feet bgs, followed by sand and sandy clay to depths between 4.0 and 5.0 feet bgs, and underlain by clay to a depth of at least 20.0 feet bgs, the maximum depth explored.

Concrete was encountered under the surface of asphalt in borings C-11 through C-14 at a depth of 1.0 foot bgs, underlain the concrete layer was a layer of peat from 1.0 to 2.0 feet bgs.

The soil boring from PM's August and November 2023 and January 2024 investigations are included in Appendix C and summarize the site-specific geology, sample depths and PID readings.

ANALYTICAL RESULTS

PM compared the analytical results of the soil samples with the EGLE Generic Cleanup Criteria and Screening Levels as presented in Parts 201/213 Rules 299.1 through 299.50, dated December 21, 2020 entitled "Cleanup Criteria Requirements for Response Activity", in accordance with Section 20120a(1) using the Residential and Nonresidential cleanup criteria and Section 21323a(1)(b)(i) using the Residential and Nonresidential RBSLs.

PM evaluated the potential presence of residual non-aqueous phase liquid (NAPL) in soils in accordance with the EGLE Non-Aqueous Phase Liquid – Petroleum Releases Characterization, Remediation, and Management Guidance document (June 2023) using Multiple Lines of Evidence (MLE) to determine if the Part 201 cleanup criteria (i.e., direct contact) are appropriate for comparison. Per the EGLE NAPL guidance document, five (5) lines of evidence from Table 3-1 within the guidance can be used to confirm the presence or absence of NAPL. Below is a list of lines of evidence that indicate the absence of residual NAPL on the subject property based on site characterization activities conducted between 2017 and 2024.

- 1. No historic presence of mobile NAPL, sheens, or visual NAPL in soil borings advanced at the property. Per Table 3-1, this indicates the absence of NAPL.
- 2. No observed or visible NAPL was documented in any of the soil or groundwater samples collected from the property. In addition, no observed or visible NAPL was identified in any of the soil borings and temporary monitoring wells installed on the property. Per Table 3-1, this indicates that absence of NAPL.
- 3. Benzene concentrations were not identified in any of the soil or groundwater samples collected from the property exceeding 10,000 micrograms per kilogram (µg/Kg). Per Table 3-1, this indicates the absence of NAPL.
- 4. PID readings were not detected at any of the soil borings exceeding 500 ppm, which per Table 3-1 indicates the absence of NAPL.
- 5. No concentrations of DRO were identified in any of the soil samples above laboratory MDLs during the site characterization activities conducted between

2017 and 2024, when analyzed. Those detection limits are below 250,000 μ g/kg and per Table 3-1 indicates the absence of NAPL.

Considering the above lines of evidence, there is no residual NAPL present in any of the soil or groundwater samples collected from the property during the recent site investigations. The MLE Evaluation table which summarizes the information above is included in Appendix E.

PM evaluated the applicability of the Generic Volatilization to Indoor Air Inhalation Criteria (GVIIC) using the "Checklist for Determining if the Generic Volatilization to Indoor Air Inhalation Criteria Apply" included in the May 2013 EGLE Guidance Document for the Vapor Intrusion Pathway. Based on the absence of groundwater within three meters of the ground surface, the GVIIC are applicable. A copy of the C.1 checklist is included in Appendix F.

Based on the Residential use of the subject property (Section 1.2), site-specific geology (Section 1.6), and construction of future Residential structures with basement structures, and, elevator pits, the EGLE VIAP screening levels are applicable for the site to assess the vapor intrusion pathway. A copy of the EGLE C.7 VIAP Evaluation is included in Appendix F.

In accordance with Part 201, a background concentration of a hazardous substance that exists in the environment at or regionally proximate to a facility that is not attributable to any release at or regionally proximate to the facility may be substituted for a generic cleanup criterion when the background concentration is higher than a criterion. Therefore, when concentrations were higher than the Part 201 Cleanup Criteria, metals were also compared to regional background levels (RBLs) for the appropriate soil type (i.e., sand, clay) from the Saginaw Glacial Lobe (2019 Soil Background and Use of the 2005 Michigan Background Survey), and PM defaulted to whichever value is greater.

Summary of Analytical Results

The soil and soil gas analytical results are summarized on Figures 3A, 3B, 3C, 3D, 3E, 3F, 3H, and 4 and in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The Figures 3A through 3H are separated by samples collected from each area of concern (A-H). The laboratory analytical reports and associated chain of custody documentation are included in Appendix G.

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Part 201 Cleanup Criteria and/or Screening Level Exceedances	
	A-1 (10.0)	5.0-6.0 and 9.0-10.0				
	A-2 (10.0)	0.5-1.5		Replicate		
	A-3 (10.0)	5.0-6.0 and 9.0-10.0	Lead	and delineate previous lead		
	A-4 (10.0)	5.0-6.0 and 9.0-10.0		exceedance		
Area A	A-5 (10.0)	5.0-6.0 and 9.0-10.0 0.5-1.5			None	
	A-6 (10.0)	and 4.5-5.5	VOCs,	.		
	A-7 (10.0)	1.0-2.0 and 5.0-6.0	PNAs, PCBs, DRO, and	Evaluate previously documented shallow fill material		
	A-8 (10.0)	1.5-2.5	Michigan 10 Metals			
	A-9 (10.0)	0.5-1.5 and 4.5-5.5	Metale			
	B-1 (5.0)		Mercury	Replicate and laterally delineate previous mercury exceedance	None	
Area B	B-2 (5.0) B-3	1.0-2.0				
	(5.0) C-1 (20.0)	4.0-5.0		exceedance	None	
	C-2 (20.0)	0.5-1.5 and 4.0-5.0			None	
	C-3	0.5-1.5	VOCs,	Assess the	DC (R): arsenic	
	(20.0)	4.5-5.5	PNAs,	historical	None	
	C-4* (20.0)	0.5-1.5 and 3.5-4.5	PCBs, DRO, and Michigan 10	power plant and substation	None	
Area C	C-5* (20.0)	1.0-2.0 and 14.0-15.0	Metals	operations	None	
	C-6* (20.0)	0.5-1.5 7.0-8.0 and 14.0-15.0			None	
	C-4R (8.0)	0.5-1.5 and 4.5-5.5	Arsenic	Delineate arsenic exceedance	None	
	C-7 (8.0)	0.5-1.5 4.5-5.5		at C-3	DC (R/NR): arsenic None	

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Part 201 Cleanup Criteria and/or Screening Level Exceedances
	C-8	0.5-1.5			
	(8.0)	and 4.5-5.5			None
	C-9	0.5-1.5			DC (R/NR): arsenic
	(8.0)	4.5-5.5			None
	C-10 (2.0)	1.0-1.5			None
	C-11 (2.0)	1.0-1.5		Delineate arsenic	None
	C-12 (2.0)	1.0-1.5	Arsenic	exceedances at C-7 and	DC (R): arsenic
	C-13 (2.0)	1.0-1.5		C-9	None
	C-14 (2.0)	1.0-1.5			None
	D-1 (15.0)	3.5-4.5 and 11.0-12.0	VOCs, PNAs, PCBs, DRO,	Assess potential former fuel	
Area D	D-2 (15.0)	1.5-2.5 and 11.5-12.5	and Michigan 10 Metals	oil use and potential fill material	None
	E-1 (15.0)	4.5-5.5 and 7.0-8.0		Assess potential fill material	None
	E-2 (15.0)	4.5-5.5 and 9.5-10.5	PNAs, DRO, Michigan 10 Metals, and asbestos		None
	E-3 (15.0)	4.5-5.5 and 10.5-11.5			None
Area E	E-4 (15.0)	4.5-5.5 and 8.5-9.5			None
	E-5 (15.0)	4.5-5.5 and 6.0-7.0			None
	E-6 (15.0)	1.0-2.0 and 4.5-5.5			None
	E-7 (15.0)	4.5-5.5			None
	E-8	4.5-5.5			GSIP: zinc
	(15.0)	7.0-8.0			None
	F-1 (15.0)	3.5-4.5 and 14.0-15.0	VOCs, PNAs,	_	
Area F	F-2 (15.0)	3.5-4.5 and 10.5-11.5	PCBs, DRO, Michigan 10 Metals, and	Assess potential fill material	None
	F-3 (15.0)	0.5-1.5 and 4.5-5.5	asbestos		

Sampling Area	Soil Boring ID (total depth [feet bgs])	Sample Depth (feet bgs)	Analysis	Objective	Part 201 Cleanup Criteria and/or Screening Level Exceedances
	G-1/TSG-1 (15.0)				
Area G	G-2/TSG-2 (15.0)	Soil: 0.5-1.5 and 9.0-10.0 Soil Gas: 5.0	Soil Gas: VOCs	Assess former dry	None
Area G	G-3 (15.0) G-4	1.5-2.5 and 9.5-10.5 1.5-2.5 and		cleaner operations	
	(15.0) G-5 (16.0)	10.0-11.0 3.5-4.5 and 10.0-11.0 1.5-2.5	VOCs and PNAs		None
	G-6 (15.0)	and 14.0-15.0			
	H-1 (15.0)	1.5-2.5 and 4.0-5.0			None
	H-2 (15.0) H-3	1.5-2.5			
	(15.0) H-4 (15.0)	4.5-5.5 1.0-2.0 and 4.5-5.5	V0.0		
Area H	H-5 (15.0)	1.5-2.5 and 7.5-8.5	VOCs, PNAs, PCBs, DRO,	Assess potential fill	
	H-6 (15.0)	1.5-2.5 and 4.5-5.5	Michigan 10 Metals, and asbestos	material	
	H-7 (15.0)	0.5-1.5 and 4.0-5.0			
	H-8 (15.0)	0.5-1.5 and 4.5-5.5			
	H-9 (15.0)	0.5-1.5 and 4.5-5.5			

R: Residential

NR: Nonresidential

Bold: Exceedance of Criteria Applicable to a Complete Exposure Pathway

No concentrations of VOCs and PNAs were detected in any of the soil samples exceeding laboratory MDLs, the most restrictive Part 201 Residential cleanup criteria, and/or the most restrictive EGLE Residential VIAP screening Levels.

No concentrations of PCBs were detected in any of the soil samples exceeding laboratory MDLs.

No other concentrations of metals were detected in any of the soil samples exceeding laboratory MDLs, the SDBLs and RBLs, the most restrictive Part 201 Residential cleanup criteria, and/or the most restrictive EGLE Residential VIAP screening Levels.

The presence of residual NAPL was assessed using the MLE in accordance with the EGLE Non-Aqueous Phase Liquid – Petroleum Releases Characterization, Remediation, and Management Guidance document (June 2023). In alignment with five (5) lines of evidence, there is no residual NAPL present on the site. See above for the five lines of evidence.

No concentrations of asbestos were detected in any of the soil samples exceeding laboratory MDLs.

No concentrations of VOCs were detected in any of the soil gas samples exceeding laboratory MDLs and/or the most restrictive EGLE Residential VIAP screening levels.

EXPOSURE PATHWAY EVALUATION

The following exposure pathways were evaluated and determined to be complete/potentially complete. Exposure pathways are eliminated when they are determined not to be complete, or it is demonstrated that unacceptable exposures do not exist and that response activities are not required to prevent or mitigate unacceptable exposures.

The subject property is currently zoned C-2A: General Business, which is consistent with Residential property use in accordance with Part 201. Additionally, the Bay City Housing Commissions plans to redevelop the subject property for residential use. Municipal water and sewer, as well as natural gas, electrical, and telecommunications utilities are available to the subject property. No water supply wells exist on the subject property.

The following exposure pathway analysis is based on the currently known information collected during the current and previous site investigations. If evidence is discovered of additional impact, the exposure pathways will need to be re-evaluated.

Complete and/or Potentially Complete Exposure Pathway?					
Pathway	Yes/No	Justification			
Groundwater Ingestion (DWP/DW)	No	 Soil contamination has been identified exceeding the Part 201 Residential and Nonresidential DWP cleanup criteria. However, municipal water is available to the subject property. Additionally, no potable or other supply wells exist. 			
Surface Water (GSIP/GSI)	No	 Soil contamination has been identified exceeding the Part 201 Residential and Nonresidential GSIP cleanup criteria. However, no surface water bodies are present onsite or within 1,800 feet downgradient relative to the subject property. 			

С	Complete and/or Potentially Complete Exposure Pathway?					
Pathway	Yes/No	Justification				
Indoor Air Inhalation (VIAP)	YES	 Soil contamination has been identified in previous investigations exceeding the applicable EGLE Residential VIAP screening, adopted for use as criteria. Based on the vacant status, no immediate threat to human health exists. However, redevelopment is planned that will include construction of multiple Residential structures. Excavation activities will occur to include the areas above Residential VIAP screening levels and Verification of Soils Remediation (VSR) samples will be collected to assess remaining nearby soils. 				
Ambient Air Volatile Soil Inhalation (VSI)	No	 Soils are present on the subject property that will be exposed during redevelopment such that potential vapors emitted from them may be encountered. Soil contamination has not been identified exceeding the applicable Part 201 Residential VSI cleanup criteria. 				
Ambient Air Particulate Soil Inhalation (PSI)	No	 Soils are present on the subject property that could be exposed during redevelopment such that potential particulates emitted or dispersed from them may be encountered. Soil contamination has not been identified exceeding the applicable Part 201 Residential PSI cleanup criteria. 				
Direct Contact (DC)	YES	 Soils are present on the subject property that could be exposed during redevelopment such that potential particulates emitted or dispersed from them may be encountered. Soil contamination has been identified exceeding the Part 201 Residential and Nonresidential DC cleanup criteria. Excavation activities will occur to include the areas exceeding Part 201 DC cleanup criteria, VSR samples will be collected to assess nearby soils. Additionally, a demarcation barrier will be installed underneath a clean soil cap, all of which will be inspected semi-annually to reduce exposure risk. 				

PLAN FOR RESPONSE ACTIVITIES

The following represents response activities that will prevent or mitigate unacceptable exposure and allow for the intended use of the subject property in a manner that protects the public's health and safety, based upon the current and intended use of the subject property.

Notice

Due to the presence of soil contamination exceeding the Part 201 Residential and Nonresidential cleanup criteria and EGLE VIAP screening levels, written notices must be provided to easement holders of record, utility franchise holders of record, and the owners and/or operators of all public utilities that serve the subject property. A model notice is included in Appendix H.

Area E Vapor Intrusion Pathway

Concentrations of mercury in soil sample SB-5 collected in Area E during the previous site investigations exceeding the EGLE VIAP screening levels. Therefore, a vapor encroachment condition exists. However, based on the lack of current occupants/operations present, no unacceptable exposure risks currently exist at the subject property.

Additionally, impacted soil at Area E will be excavated and disposed offsite in accordance with local, state, and federal regulations. Refer to the Construction Management summary below for additional information.

Area A Direct Contact Pathway

Concentrations of lead were identified in soil samples collected from the subject property during previous site investigations above the Part 201 Residential and Nonresidential DC cleanup criteria. Therefore, a dermal exposure risk exists. The existing surface cover consisting of the existing asphalt pavement, groomed grass/landscaped areas in the rights-of-ways, and gravel cover will be maintained to prevent dermal contact with contaminated soils. An Operation and Maintenance Plan (O&M Plan) has been developed and will require visual inspections on a semi-annual basis (i.e., in June and December of each calendar year) and will include the following:

• Condition and integrity of the paved and non-paved surface covers, including general condition, and pitting or cracks greater than 0.5-inches in width, through which impacted subsurface soils could be readily accessed.

Damaged and/or deteriorated surface cover will be repaired and/or replaced with an equivalent surface cover within 14 days of discovery. If repair/replacement of the surface cover is not feasible within the specified timeframe, the areas will be temporarily covered with anchored plastic sheeting, anchored landscaping fabric, or anchored plywood, as appropriate until repair/replacement is complete. Records of the inspections and any associated repair activities, including temporary cover installation, will be maintained for the duration of the owner/operator status of the subject property. Surface cover at the subject property is presented on Figure 3. Surface cover OM&M will occur as recommended until completion of excavation activities described below.

A copy of the O&M Plan and Inspection Forms for the Exposure Barriers, including instructions for personnel conducting the inspection activities, are included in Appendix I.

Area C Direct Contact Pathway

Concentrations of arsenic were identified in soil samples collected from the subject property during previous site investigations above the Part 201 Residential and Nonresidential DC cleanup criteria. Therefore, a dermal exposure risk exists. The existing surface cover consisting of the existing asphalt pavement, groomed grass/landscaped areas in the rights-of-ways, and gravel cover will be maintained to prevent dermal contact with contaminated soils. An Operation and Maintenance Plan (O&M Plan) has been developed and will require visual inspections on a semi-annual basis (i.e., in June and December of each calendar year) and will include the following:

Condition and integrity of the paved and non-paved surface covers, including general
condition, and pitting or cracks greater than 0.5-inches in width, through which impacted
subsurface soils could be readily accessed.

Damaged and/or deteriorated surface cover will be repaired and/or replaced with an equivalent surface cover within 14 days of discovery. If repair/replacement of the surface cover is not feasible within the specified timeframe, the areas will be temporarily covered with anchored plastic sheeting, anchored landscaping fabric, or anchored plywood, as appropriate until

repair/replacement is complete. Records of the inspections and any associated repair activities, including temporary cover installation, will be maintained for the duration of the owner/operator status of the subject property. Surface cover at the subject property is presented on Figure 3.

A copy of the O&M Plan and Inspection Forms for the Exposure Barriers, including instructions for personnel conducting the inspection activities, are included in Appendix H.

Based on the planned redevelopment of the subject property, which includes installation of a parking lot that will extend to a depth of approximately 0.5 feet bgs, limited impacted soil will be excavated and disposed offsite in accordance with local, state, and federal regulations. Additionally, a demarcation barrier will be installed to a depth of approximately 2.0 feet bgs, with a clean soil cap above the barrier. Refer to the Construction Management summary below for additional information.

CONSTRUCTION MANAGEMENT

Soil and Groundwater Management

Since soils identified in Areas A, C and/or E, at the subject property are contaminated with chemicals of concern representing a vapor intrusion condition at concentrations exceeding the EGLE VIAP screening levels and/or the Part 201 DC cleanup criteria, targeted excavation and disposal of soils exceeding the EGLE VIAP screening levels and Part 201 DC cleanup criteria are proposed to address the volatilization to indoor air and dermal exposure pathways. Targeted excavation and disposal activities are summarized below by area:

Applicable Part 201 DC and EGLE VIAP Soil Excavation					
Excavation Area	Area Depth		Estimated Volume (cubic yards)	Volume (Tons)	
Area A	1,730	9	578	808	
Area C*	7,660	5	1,419	1,986	
Area E	2,310	6	514	719	
TOTAL	11,700	-	2,511	3,513	

^{*=} Area C currently has limited planned excavation; therefore, DC will continue to remain a complete pathway. A demarcation barrier and clean cap will be utilized to further prevent exposure concerns. Refer above to Area C Direct Contact Pathway.

Construction Dewatering/Groundwater Management

If groundwater accumulates in the excavations during the contaminated soil removal activities that interferes with excavation or backfilling, it will be pumped, stored in frac tanks, sampled for characterization, and transported for proper disposal at a licensed disposal facility in accordance with Michigan Parts 111 and 115, as applicable.

Oversight, Sampling, and Reporting

Following the remedial excavation activities, VSR samples will be collected from the excavation floor and sidewalls of Areas A and E to document that concentrations exceeding the Part 201 Residential DC, and EGLE Residential VIAP Screening Levels were removed, and document post excavation floor and sidewall concentrations in accordance with the EGLE guidance document

"Sampling Strategies and Statistics Training Materials" (S3TM) for Part 201 Cleanup Criteria, dated March 18, 2002. The actual area and extent of soil excavation is dependent upon actual field conditions and receipt of analytical results from VSR samples collected following excavation activities and may vary from what is estimated within this report. Excavation areas will not be backfilled with clean backfill until receipt of VSR analytical results to determine if additional excavation is or is not required. If analytical results from VSR sampling identifies contaminants above applicable cleanup criteria, additional excavation and VSR sampling and/or migration barriers will be required. Prior to backfilling, information outlining the fill source and documentation (i.e., fill is certified or tested to be clean material) will be provided to EGLE for review and approval.

Excavation VSR floor and sidewall samples will be collected at a frequency consistent with the sampling protocols outlined in the EGLE S3TM guidance document. Based on the size of the excavation floor areas (i.e., less than 10,890 square feet) and sidewalls (i.e., less than 4,000 square feet), PM utilized the excavation floor and sidewall sample population requirements as documented in Tables 1.1 and 1.2 within Section 1.3.1, Verification of Remediation, within the EGLE S3TM guidance document to determine the number of VSR samples needed for each excavation area (Areas A and E), summarized as follows:

Excavation Floor Sample Grid and VSR Sample Summary (Areas A and E)					
Excavation Area	Perimeter (feet)	Depth (feet)	Floor Area (square feet)	Sidewall Area (square feet)	Total VSR samples
Area A	168	9	1,730	1,512	10
Area E	197	6	2,310	1,182	10
				TOTAL	20

VSR samples will be collected for laboratory analysis of lead and/or mercury, or some combination thereof.

Oversight, sampling and reporting associated with due care activities will also be required and will include 1) bid specifications; 2) implementation/oversight of engineering controls; and 3) oversight associated with contaminated soil and groundwater management. Oversight, sampling, and reporting is estimated to take 60 days during construction activities.

An environmental professional will also oversee all construction activities to ensure due care compliance. During onsite work activities, the environmental professional will:

- Prepare daily field logs
- Direct the earthwork contractor to remove impacted soil as appropriate and deemed necessary
- Document each truckload of excavated soil (time out, company name, vehicle number, estimated cubic yardage, destination)
- Document each truckload of imported clean fill material (time in, company name, vehicle number, estimated cubic yardage, reported source)
- Sign/track soil waste manifests
- Collect on-site photographs documenting work activities
- Note unusual subsurface conditions

The proposed oversight activities will be protective of public health, safety, and welfare and the environment because it will provide documentation that the activities described within are completed under the required stipulations for compliance with due care obligations.

Former Building Material, Slab, and Footing Removal

As noted in the Geology/Hydrogeology section above, layers of concrete and organic peat were encountered in four soil borings in Areas C, at depths ranging between 1.0 and 2.0 feet bgs, with intervals of 1.0 foot in thickness. Based upon this information, the potential exists for additional buried building slabs/material to be encountered during planned limited excavation activities in this area. If materials are encountered in a non-contaminated area, the environmental professional will inspect for staining and surface coatings (i.e., paint) and if none present, the material can be recycled or disposed offsite. If materials are encountered in contaminated areas and are in contact with contaminated soil, the materials will be stockpiled and sampled for waste characterization to determine the most appropriate disposal method.

CONCLUSIONS

On August 21-25, November 8, 2023, and January 23, 2024 PM completed subsurface investigation activities at the subject property to assess eight areas of concern (Area A through Area H) identified in the June 2023 SAP, which consisted of the advancement of 54 soil borings (A-1 through A-9, B-1 through B-3, C-1 through C-14 and C-4R, D-1 and D-2, E-1 through E-8, F-1 through F-3, G-1 through G-6 and H-1 through H-9), installation of two temporary in-boring soil gas points, and the collection of 91 soil samples and two soil gas samples for laboratory analysis of VOCs, PNAs, PCBs, DRO, Michigan 10 Metals, and asbestos, or some combination thereof.

Analytical results identified concentrations of arsenic in Area C in exceedance of the Part 201 DC cleanup criteria. The extent of shallow contamination is not fully delineated to the west; however, no Part 201 DC analytical exceedances of arsenic were identified in Area H (west of Area C). As such, the approximate delineation follows the known extent of shallow contamination in Area C (Figure 5).

No other concentrations of target analytes were identified in any of the soil samples analyzed from the subject property between August 2023 and January 2024 exceeding laboratory MDLs, the SDBLs and RBLs (applicable to metals only), the most restrictive Part 201 Residential cleanup criteria, and/or the most restrictive EGLE Residential VIAP screening levels. Based on these analytical results and those from the previous site investigations, no additional investigation is warranted for Areas B, D, F, G, H, and I.

Based on the identified contamination in areas A and E during previous site investigations, construction management activities are needed to properly manage the contaminated soils in these areas to remain compliant with due care obligations under Part 201. All contaminated soils removed from Areas A and E will be disposed at a licensed landfill. An estimated 2,652 tons (1,894 cubic yards) of contaminated soil will be required to be excavated to depths ranging from 5.0 to 9.0 feet bgs to remediate Areas A and E to unrestricted residential criteria to facilitate the proposed redevelopment and ensure due care obligations are met. Clean fill that is documented to be non-contaminated at the borrow source, will be imported, rough graded, and compacted to balance the site in areas where soil was removed and where excavations exceed the cut depth for the proposed redevelopment.

Following the remedial excavation activities, VSR samples will be collected from the excavation floor and sidewalls of Areas A and E to document that concentrations exceeding the Part 201 Residential DC and EGLE Residential VIAP were removed, and document post excavation floor and sidewall concentrations in accordance with the EGLE guidance document S3TM for Part 201 Cleanup Criteria, dated March 18, 2002. The actual area and extent of soil excavation is dependent upon actual field conditions and receipt of analytical results from VSR samples collected following excavation activities and may vary from what is estimated within this report. Excavation areas will not be backfilled with clean backfill until receipt of VSR analytical results document that concentrations exceeding the Part 201 DC and Residential VIAP are no longer present in the excavated area. If analytical results from VSR sampling identifies contaminants above those applicable criteria, additional excavation and VSR sampling and/or migration barriers will be required. Prior to backfilling, information outlining the fill source and documentation (i.e., fill is tested and documented to be non-contaminated) must be obtained from the borrow source.

Additional construction management considerations include the proper characterization and management and disposal of any groundwater that accumulates within contaminated soil excavations.

If you have any questions regarding the information in this report, please contact us at 800.313.2966.

REPORT PREPARED BY:

REPORT REVIEWED BY: PM Environmental, a Pinchin Company PM Environmental, a Pinchin Company

Trenton Singer Staff Geologist

Steven E. Price, CHMM Principal and Vice President

FIGURES

Figure 1:	Property Vicinity Map
Figure 2:	Subject Property and Adjoining Properties with GPR Survey Area
Figure 3A:	Area A Soil Analytical Results
Figure 3B:	Area B Soil Analytical Results
Figure 3C:	Area C Soil Analytical Results
Figure 3D:	Area D Soil Analytical Results
Figure 3E:	Area E Soil Analytical Results
Figure 3F:	Area F Soil Analytical Results
Figure 3G:	Area G Soil Analytical Results
Figure 3H:	Area H Soil Analytical Results
Figure 4:	Area G Soil Gas Analytical Results
Figure 5:	Extent of Contamination
Figure 6:	Surface Cover Map

TABLES

Table 1:	Summary of Area A Soil Analytical Results: VOCs, PNAs, PCBs, Michigan 10	
	Metals, and DRO	
Table 2.	Summary of Area R Soil Analytical Paculte: Marcury	

Table 2: Summary of Area B Soil Analytical Results: Mercury

Table 3: Summary of Area C Soil Analytical Results: VOCs, PNAs, PCBs, Michigan 10

Metals, and DRO

Table 4: Summary of Area D Soil Analytical Results: VOCs, PNAs, PCBs, Michigan 10

Metals, and DRO

Table 5: Summary of Area E Soil Analytical Results: PNAs, Michigan 10 Metals, and DRO Table 6: Summary of Area F Soil Analytical Results: VOCs, PNAs, PCBs, Michigan 10

Metals, and DRO

Table 7: Summary of Area G Soil Analytical Results: VOCs and PNAs

Table 8: Summary of Area H Soil Analytical Results: VOCs, PNAs, PCBs, Michigan 10

Metals, and DRO

Table 9: Summary of Soil Analytical Results: Asbestos Table 10: Summary of Soil Gas Analytical Results: VOCs

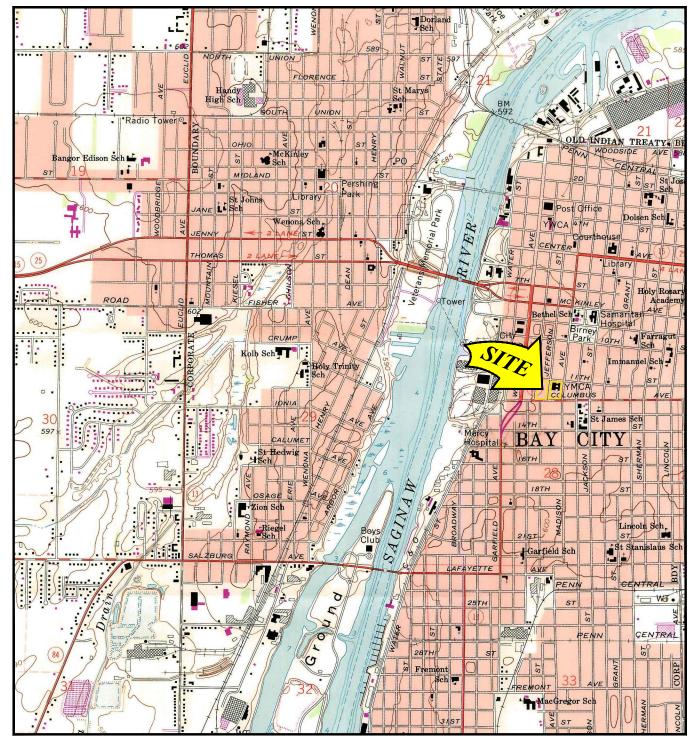
APPENDICES

Appendix A: Figure and Tables from Previous Site Investigations

Appendix B: GPR Summary Report

Appendix C: Soil Boring/Temporary Soil Gas Logs

Appendix D: Soil Gas Field Logs Appendix E: MLE Evaluation


Appendix F: EGLE C.1 GVIIC Checklist and C.7 VIAP Evaluation

Appendix G: Laboratory Analytical Reports
Appendix H: Surface Cover O&M Plan

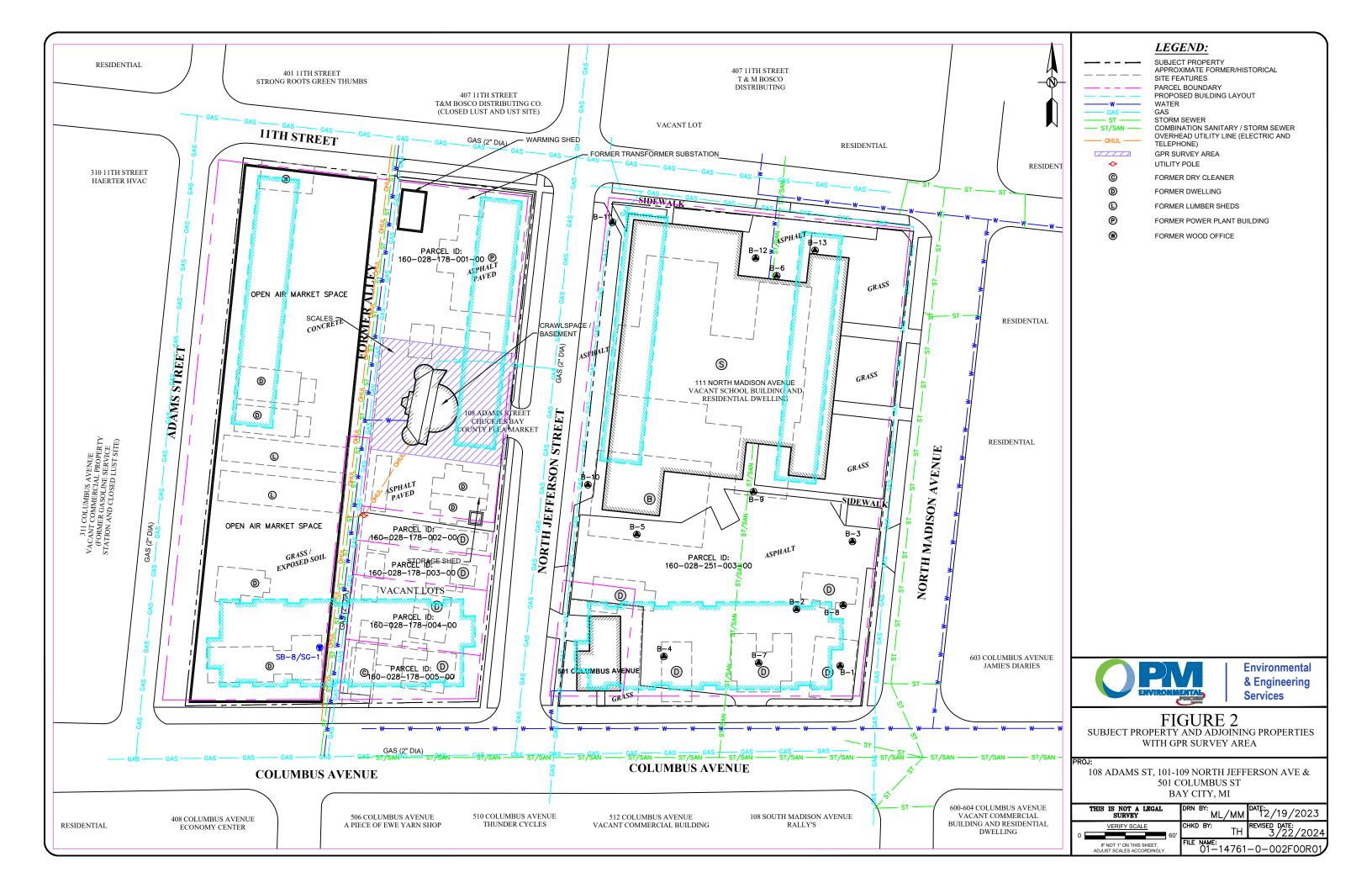
Appendix I: Model Notice

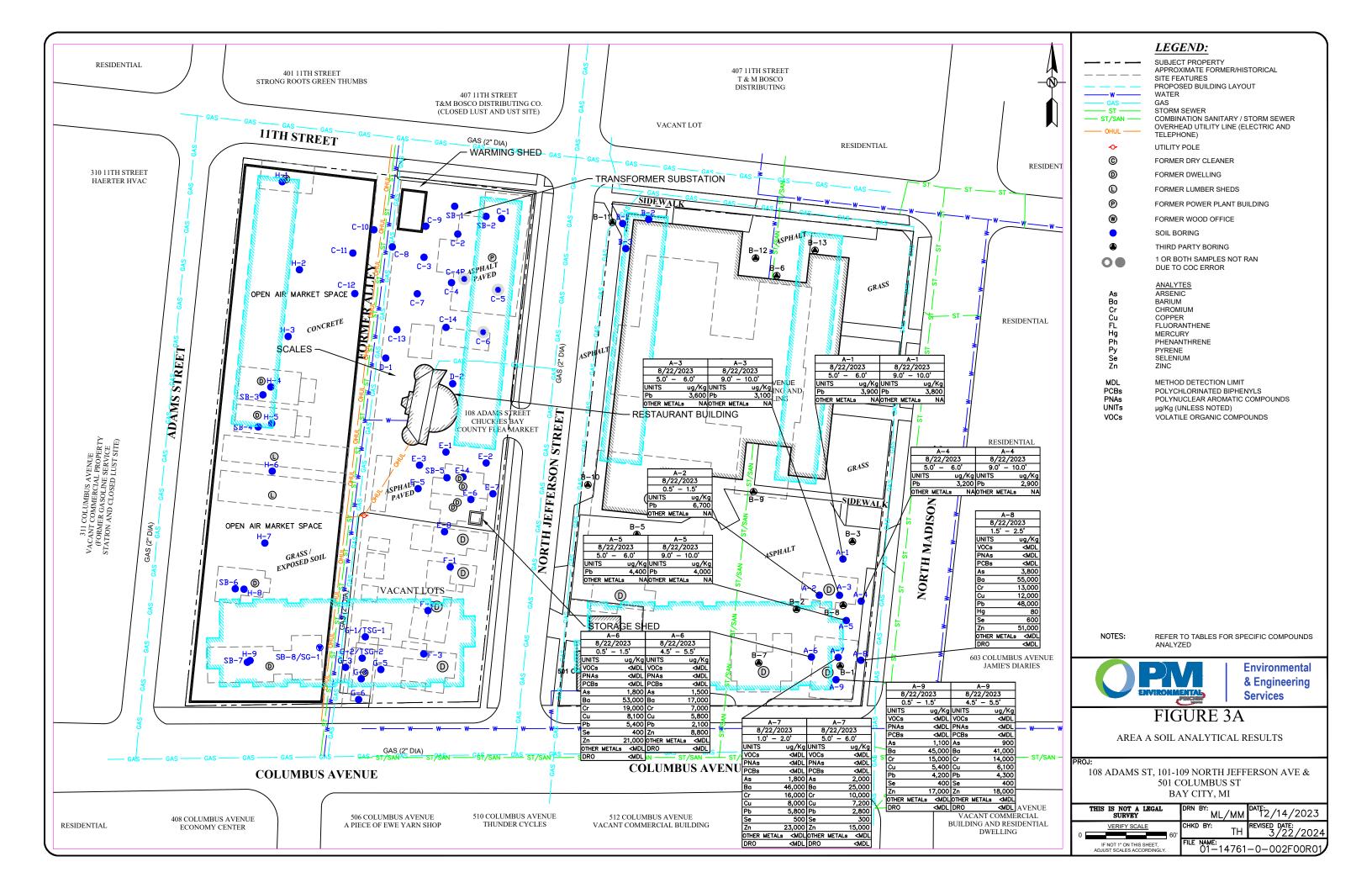
Figures

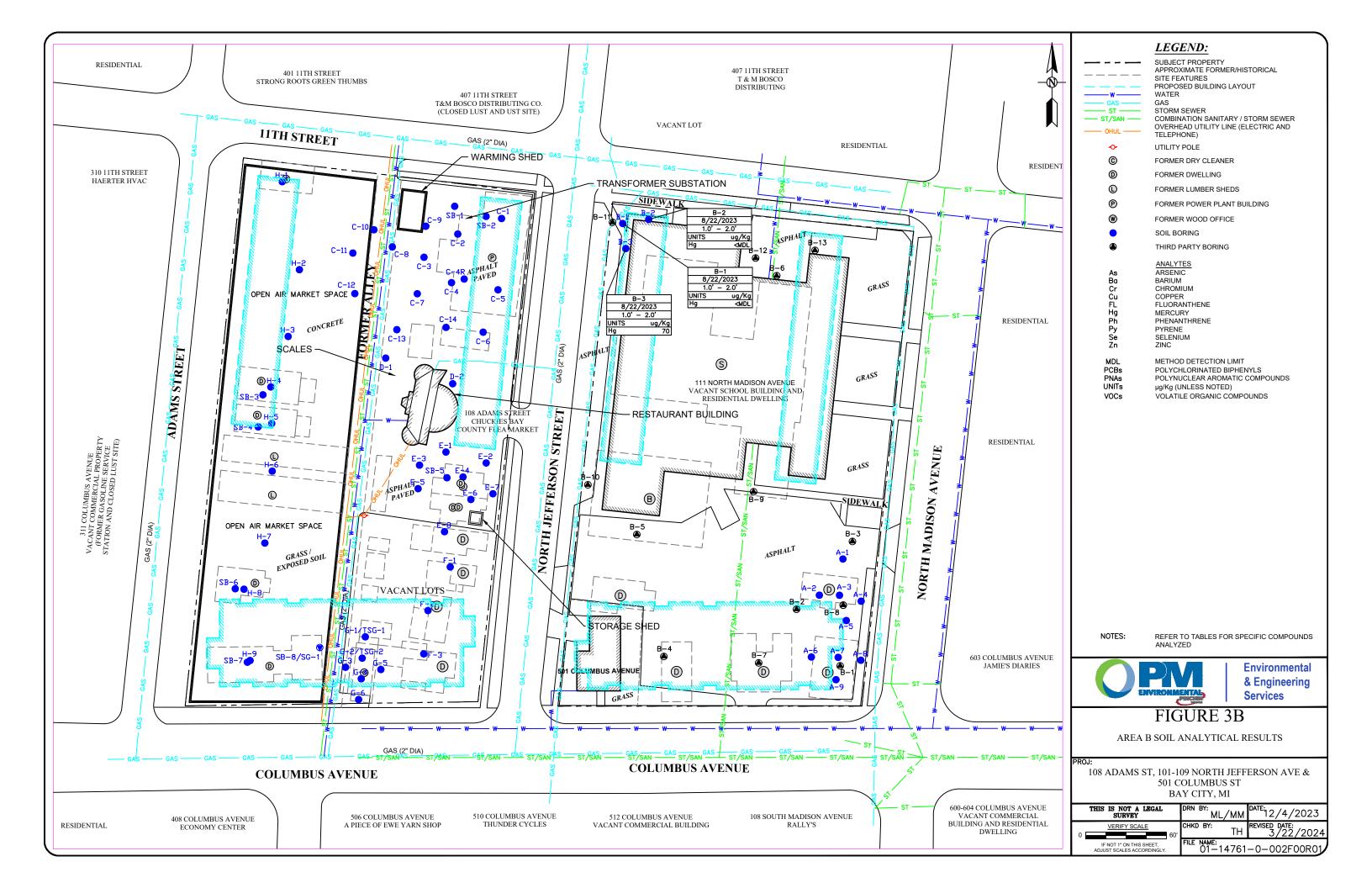
BAY COUNTY

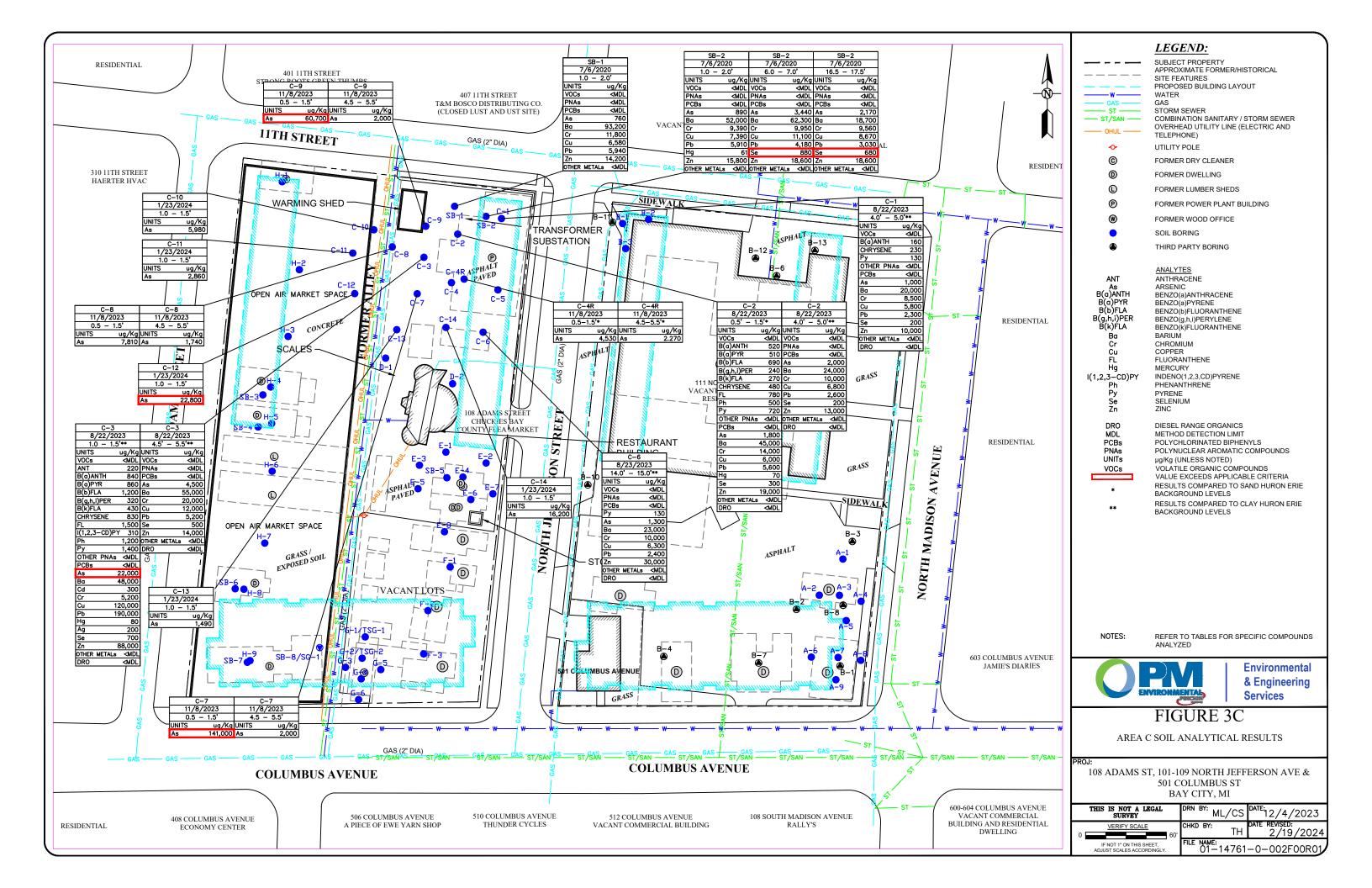
FIGURE 1

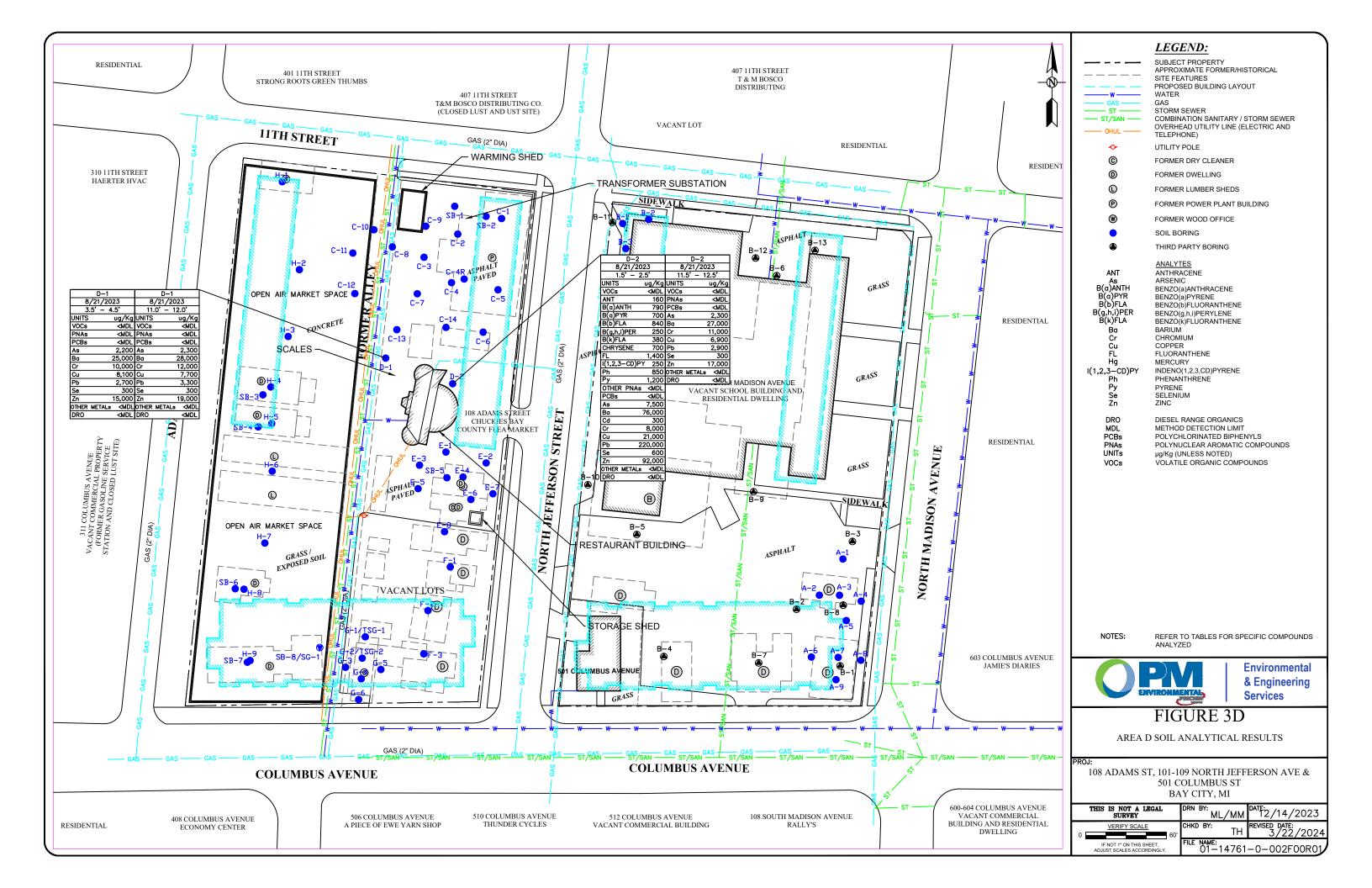
PROPERTY VICINITY MAP
UNITED STATES GEOLOGICAL SURVEY, 7.5 MINUTE SERIES
BAY CITY, MI QUADRANGLE, 1967. PHOTO REVISED 1973.

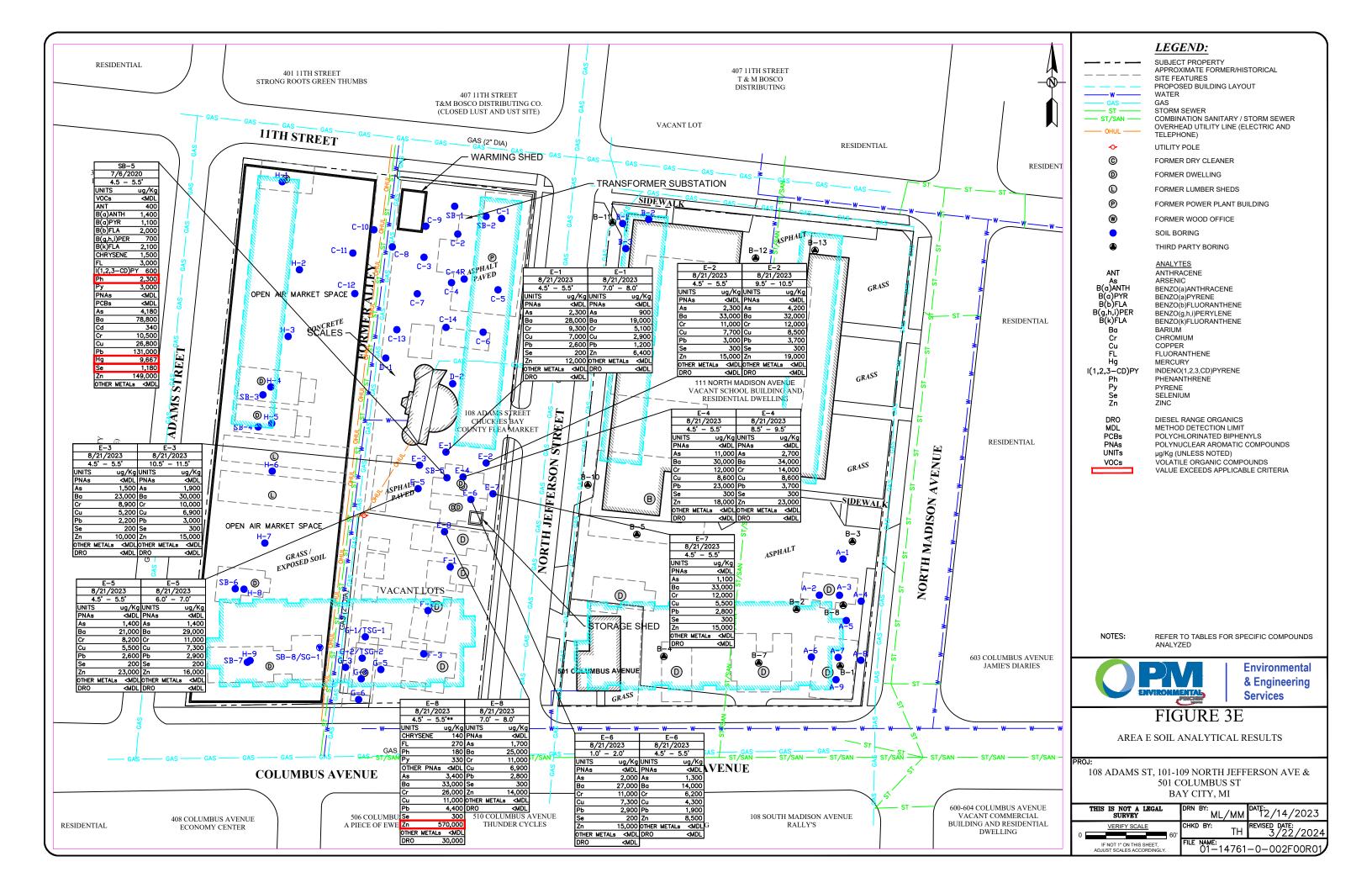


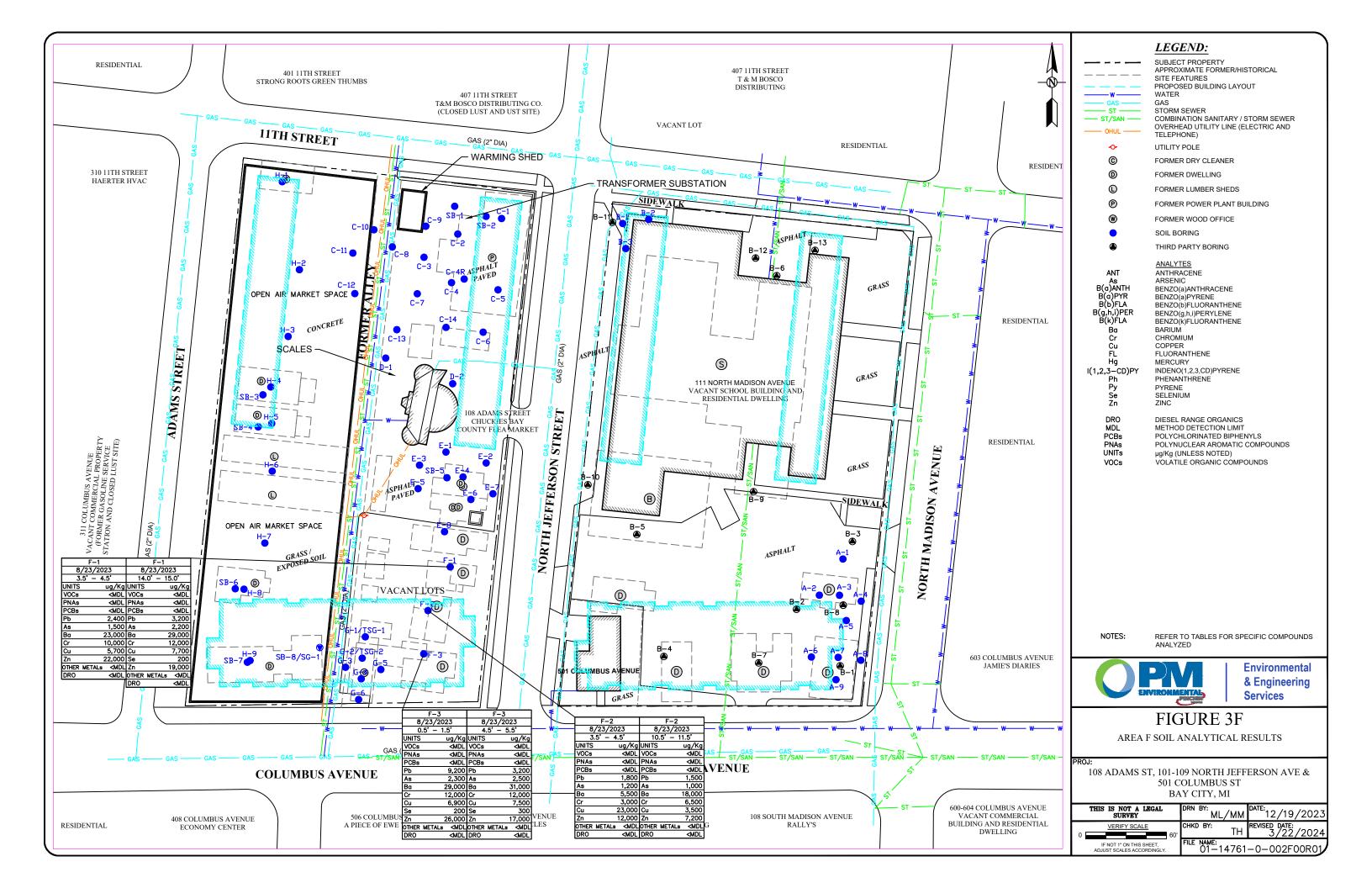


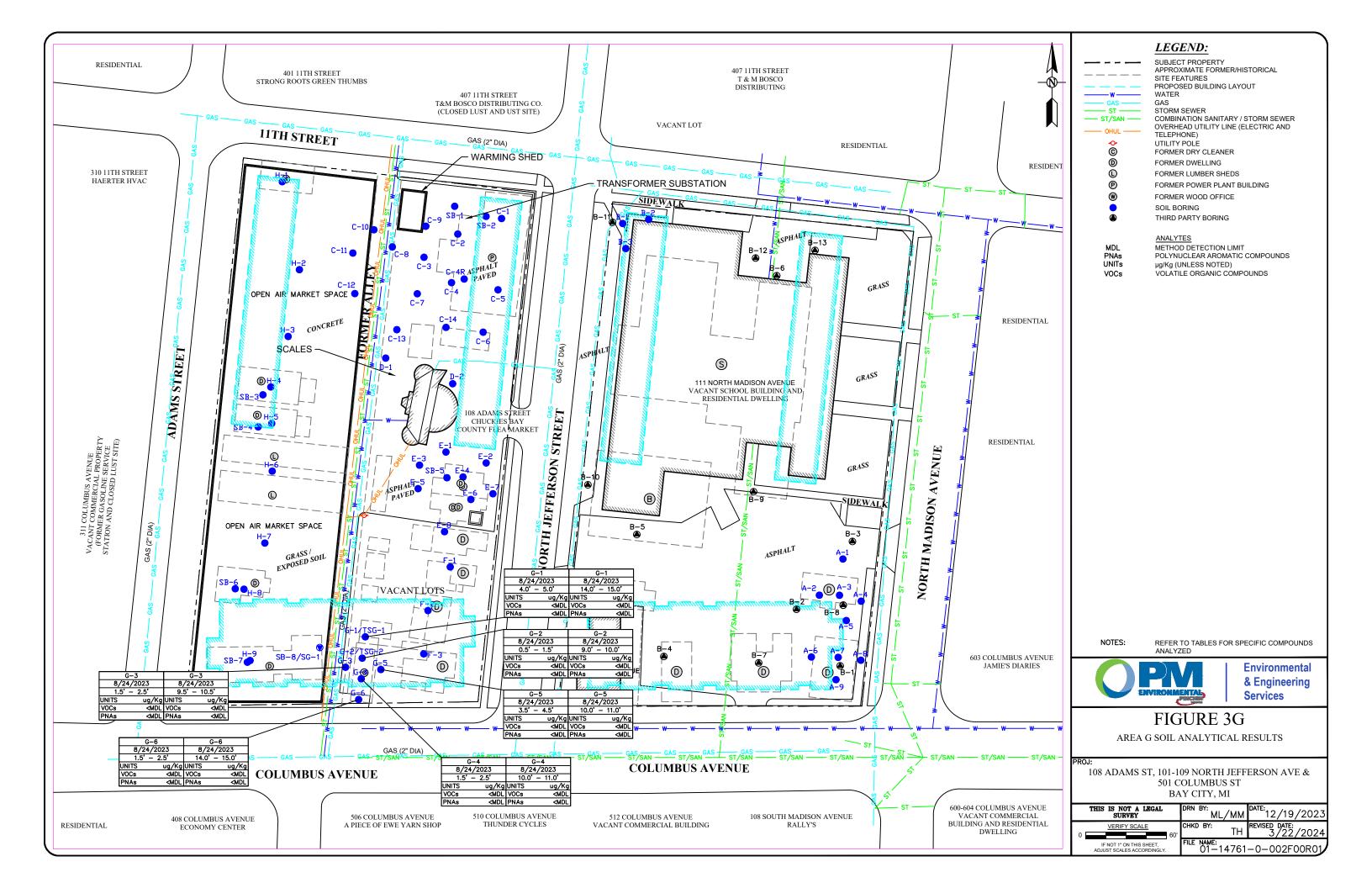

& Environmental & Engineering Services

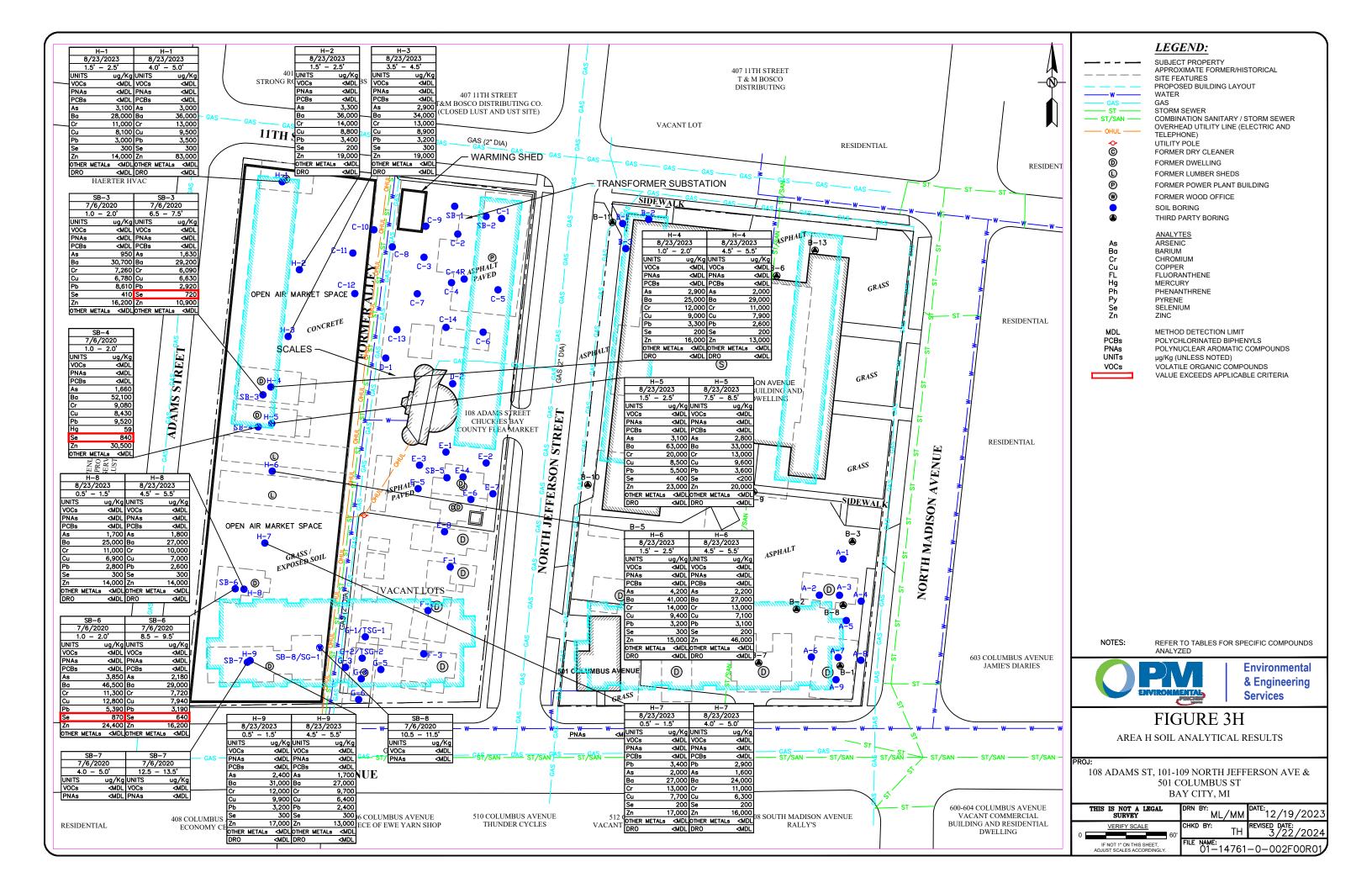

PROJ: 108 ADAMS ST, 101-109 NORTH JEFFERSON AVE & 501 COLUMBUS ST BAY CITY, MI

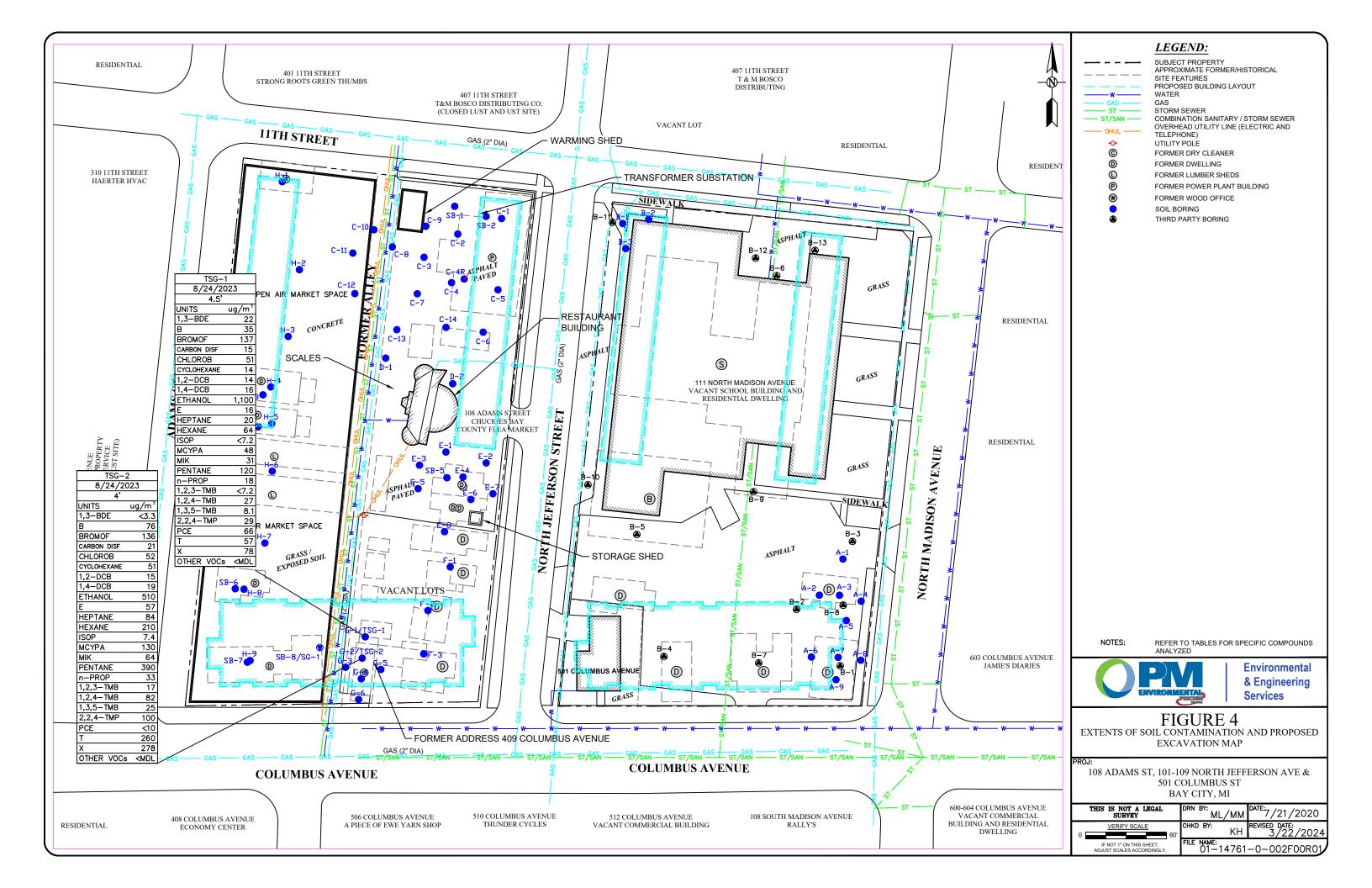

THIS IS NOT A LEGAL SURVEY	DRN BY:	ML	DATE: 8/15/2023
VERIFY SCALE 0 2000'	CHKD BY:	KH	SCALE: , 1" = 2,000
IF NOT 1" ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	FILE NAME: 01-1	14761	-0-002F00R0

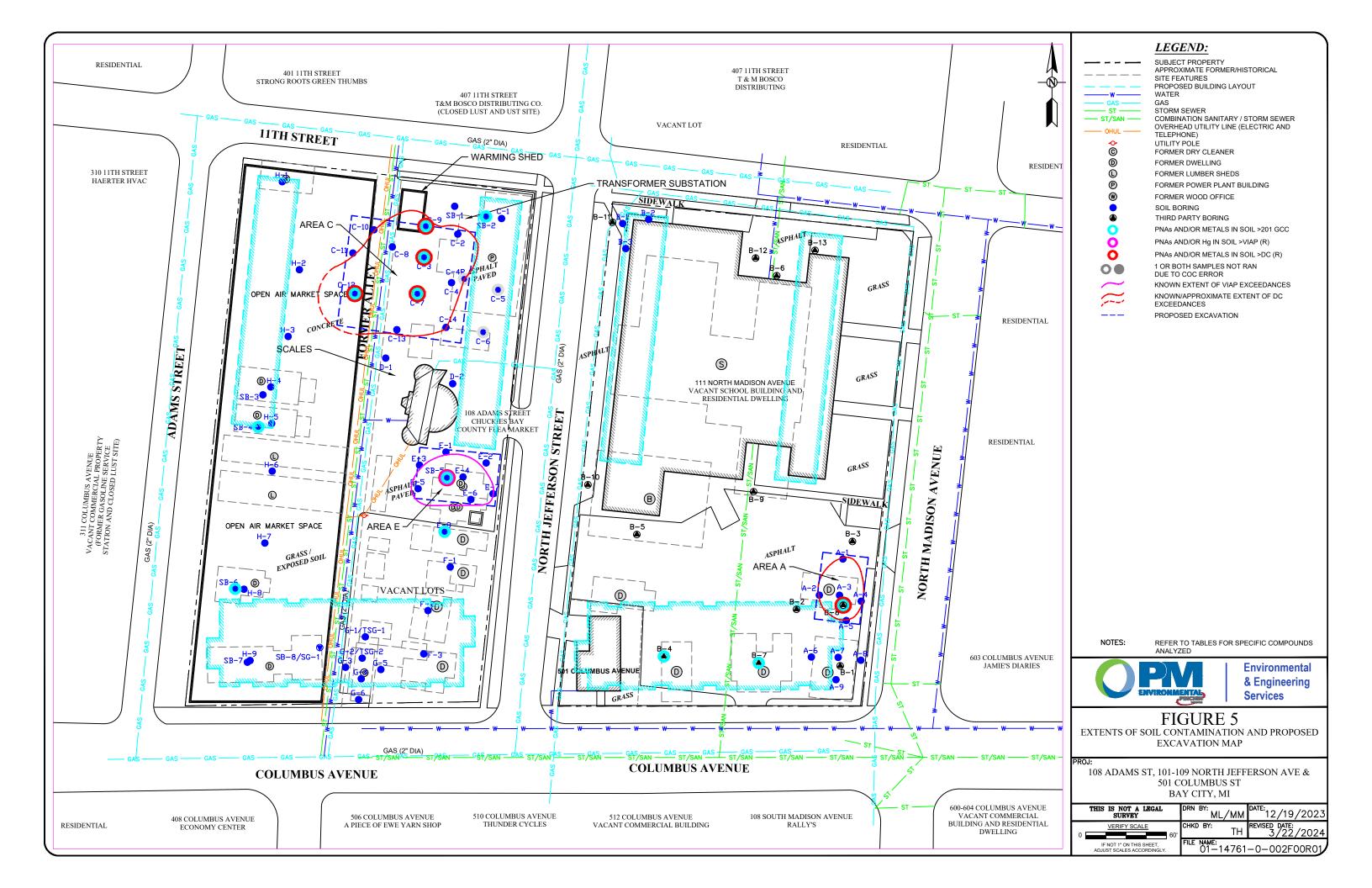


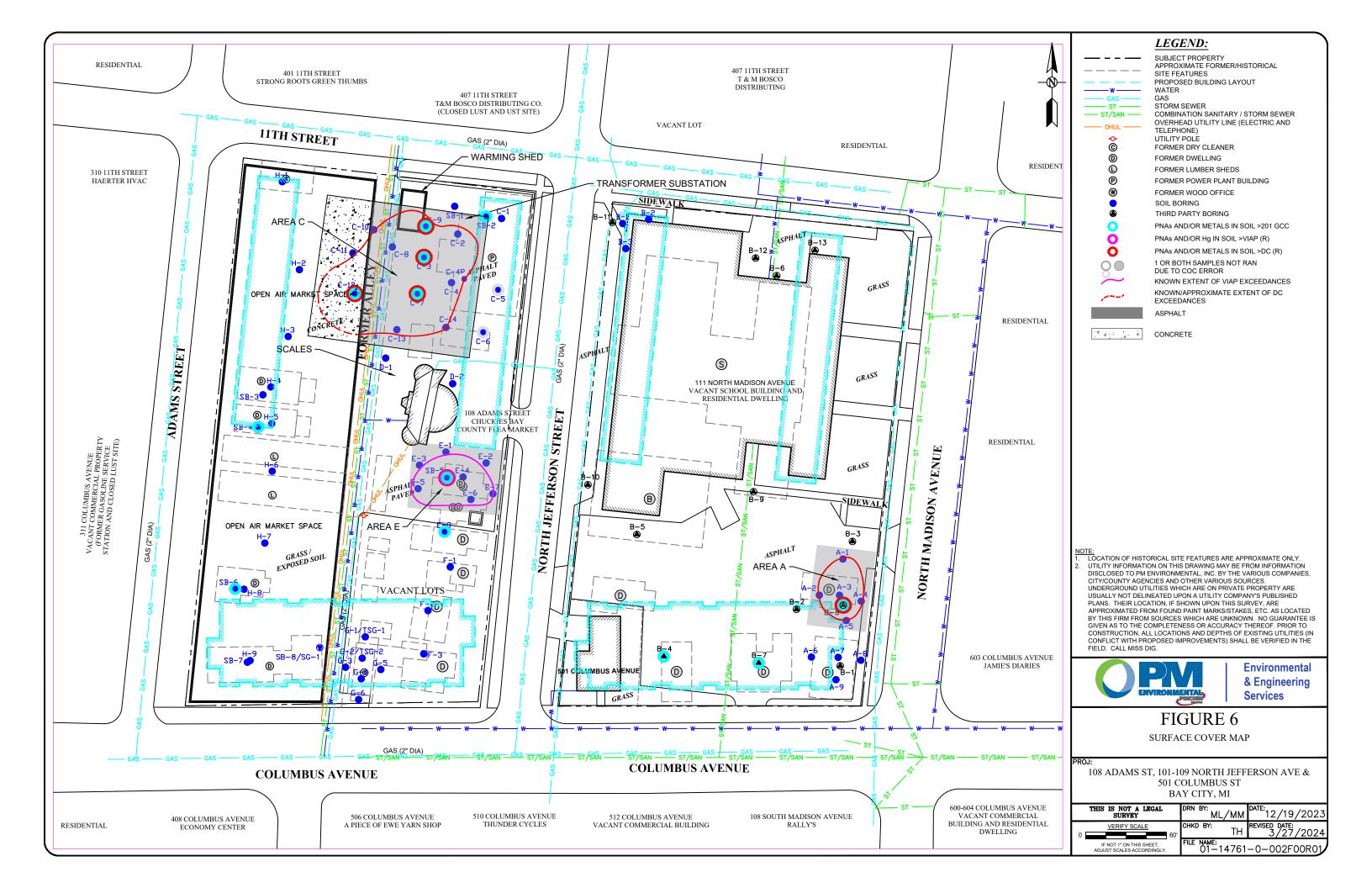












Tables

TABLE 1 TABLE 1 SUMMARY OF AREA A SOLL ANALYTICAL RESULTS VOCs, PINAs, PCBs, MI-10 METALS, AND DRO 108 ADAMS STREET SITE 108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT 501-14761-00002

Clay Saginaw Background Levels (2019 Soil Background and Use of the 2005 Michigan Background Survey) NA NA NA NA 17,100 172,000 2,000 43,500 32,200 35,000 50,000																		
************************************		Polynuclear Aromatic Polychlorinated Michigan 10 Metals (MI-10), an	Hydrocarbons (PNAs), Biphenyls (PCBs), d Diesel Range Organics (DRO)		VOCs	PNAs	PCBs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc	DRO¹
Marcian Control Con		Chemical Abstract S	ervice Number (CAS#)		Various	Various	Various	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA
Region	Sample ID	Sample Date	Soil Type		VOCs	PNAs	PCBs		•			MI-10	Metals			•		DRO
Column C			Clay		NA	NA	NA	NA	NA	NA	NA	NA	3,900	NA	NA	NA	NA	NA
Part	A-1		Clay	9.0-10.0	NA	NA	NA	NA	NA	NA	NA	NA	3,800	NA	NA	NA	NA	NA
Clay	A-2		Gravelly Sand/Sandy Clay Interface	0.5-1.5	NA	NA	NA	NA	NA	NA	NA	NA	6,700	NA	NA	NA	NA	NA
Cay			Clay	5.0-6.0	NA	NA	NA	NA	NA	NA	NA	NA	3,600	NA	NA	NA	NA	NA
Clay	A-3	Clay 9.0-10.0					NA	NA	NA	NA	NA	NA	3,100	NA	NA	NA	NA	NA
Clay							NA	NA	NA	NA	NA	NA	3,200	NA	NA	NA	NA	NA
Sembly Clay Sembly Clay Sembly Clay Sembly Clay Sembly Clay Interface Sembly Clay Interfac	A-4	A-4					NA	NA	NA	NA	NA	NA	2,900	NA	NA	NA	NA	NA
Series S			Sandy Clay	5.0-6.0	NA	NA	NA	NA	NA	NA	NA	NA	4,400	NA	NA	NA	NA	NA
Clay/Sandy Clay Interface	A-5	8/22/2023	Sandy Clay	9.0-10.0	NA	NA	NA	NA	NA	NA	NA	NA	4,000	NA	NA.	NA	NA	NA
Clay Sand Sandy Clay Interface 4.5.5.5 -4.0C			Gravelly Sand/Clay Interface	0.5-1.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,800</td><td>53,000</td><td><200</td><td>19,000</td><td>8,100</td><td>5,400</td><td><60</td><td>400</td><td><100</td><td>21,000</td><td><29,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,800</td><td>53,000</td><td><200</td><td>19,000</td><td>8,100</td><td>5,400</td><td><60</td><td>400</td><td><100</td><td>21,000</td><td><29,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,800</td><td>53,000</td><td><200</td><td>19,000</td><td>8,100</td><td>5,400</td><td><60</td><td>400</td><td><100</td><td>21,000</td><td><29,000</td></mdl<>	1,800	53,000	<200	19,000	8,100	5,400	<60	400	<100	21,000	<29,000
A-7 Sandy Clay/Clay Interface 5.0-6.0 -4A/DL -4A	A-6		Clay/Sandy Clay Interface	4.5-5.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,500</td><td>17,000</td><td><200</td><td>7,000</td><td>5,800</td><td>2,100</td><td><60</td><td><200</td><td><100</td><td>8,800</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,500</td><td>17,000</td><td><200</td><td>7,000</td><td>5,800</td><td>2,100</td><td><60</td><td><200</td><td><100</td><td>8,800</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,500</td><td>17,000</td><td><200</td><td>7,000</td><td>5,800</td><td>2,100</td><td><60</td><td><200</td><td><100</td><td>8,800</td><td><28,000</td></mdl<>	1,500	17,000	<200	7,000	5,800	2,100	<60	<200	<100	8,800	<28,000
Sandy Clay (Clay Interface) S. 6.6.0 S. 6.0 S. 6.			Sand/Sandy Clay Interface	1.0-2.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,800</td><td>46,000</td><td><200</td><td>16,000</td><td>8,000</td><td>5,800</td><td><60</td><td>500</td><td><100</td><td>23,000</td><td><30,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,800</td><td>46,000</td><td><200</td><td>16,000</td><td>8,000</td><td>5,800</td><td><60</td><td>500</td><td><100</td><td>23,000</td><td><30,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,800</td><td>46,000</td><td><200</td><td>16,000</td><td>8,000</td><td>5,800</td><td><60</td><td>500</td><td><100</td><td>23,000</td><td><30,000</td></mdl<>	1,800	46,000	<200	16,000	8,000	5,800	<60	500	<100	23,000	<30,000
And Gravelly Sand/Sandy Clay Interface 0.5-1.5	A-7		Sandy Clay/Clay Interface	5.0-6.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,000</td><td>25,000</td><td><200</td><td>10,000</td><td>7,200</td><td>2,800</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,000</td><td>25,000</td><td><200</td><td>10,000</td><td>7,200</td><td>2,800</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,000</td><td>25,000</td><td><200</td><td>10,000</td><td>7,200</td><td>2,800</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<>	2,000	25,000	<200	10,000	7,200	2,800	<60	300	<100	15,000	<28,000
Sandy Clay 4.5-5.5 <	A-8		Clayey Sand/Sandy Clay Interface	1.5-2.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3,800</td><td>55,000</td><td><200</td><td>13,000</td><td>12,000</td><td>48,000</td><td>80</td><td>600</td><td><100</td><td>51,000</td><td><30,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3,800</td><td>55,000</td><td><200</td><td>13,000</td><td>12,000</td><td>48,000</td><td>80</td><td>600</td><td><100</td><td>51,000</td><td><30,000</td></mdl<></td></mdl<>	<mdl< td=""><td>3,800</td><td>55,000</td><td><200</td><td>13,000</td><td>12,000</td><td>48,000</td><td>80</td><td>600</td><td><100</td><td>51,000</td><td><30,000</td></mdl<>	3,800	55,000	<200	13,000	12,000	48,000	80	600	<100	51,000	<30,000
Sandy Clay 4.5-5.5 MDL			Gravelly Sand/Sandy Clay Interface	0.5-1.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,100</td><td>45,000</td><td><200</td><td>15,000</td><td>5,400</td><td>4,200</td><td><60</td><td>400</td><td><100</td><td>17,000</td><td><29,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,100</td><td>45,000</td><td><200</td><td>15,000</td><td>5,400</td><td>4,200</td><td><60</td><td>400</td><td><100</td><td>17,000</td><td><29,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,100</td><td>45,000</td><td><200</td><td>15,000</td><td>5,400</td><td>4,200</td><td><60</td><td>400</td><td><100</td><td>17,000</td><td><29,000</td></mdl<>	1,100	45,000	<200	15,000	5,400	4,200	<60	400	<100	17,000	<29,000
Security Company Com	A-9		Sandy Clay	4.5-5.5	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>900</td><td>41,000</td><td><200</td><td>14,000</td><td>6,100</td><td>4,300</td><td><60</td><td>400</td><td><100</td><td>18,000</td><td><31,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>900</td><td>41,000</td><td><200</td><td>14,000</td><td>6,100</td><td>4,300</td><td><60</td><td>400</td><td><100</td><td>18,000</td><td><31,000</td></mdl<></td></mdl<>	<mdl< td=""><td>900</td><td>41,000</td><td><200</td><td>14,000</td><td>6,100</td><td>4,300</td><td><60</td><td>400</td><td><100</td><td>18,000</td><td><31,000</td></mdl<>	900	41,000	<200	14,000	6,100	4,300	<60	400	<100	18,000	<31,000
Statewide Default Background Levels (2019 Soil Background and Use of the 2005 Michigan Background Survey) NA NA NA NA 17,100 172,000 2,200 43,500 32,500 32,500 38,500 50 1,100 1,000 91,500 9			Generic Soil Cleanup Criteria Tables 2 a	and 3: Residential and Non-Resident	ial Part 201 Ger	neric Cleanup (Criteria and Scr	eening Levels/		Based Screening	g Levels, Decer	mber 21, 2020						
Clay Saginaw Background Levels (2019 Soil Background and Use of the 2005 Michigan Background Survey) NA					Res	idential (µg/Kg)											
Various Vari	Statewide Default Background Levels														_			
Various Vari		19 Soil Background and Use of the 20	05 Michigan Background Survey)															
Soil Volatilization to Indoor Air Inhalation (SVII) 1 Various 1 0 Various 2 406-65 NLV NLV NLV NLV NLV NLV NLV 1 NLV 1 NLV 1 NLV 48,000 NLV		D																
Ambient Air Infinite Source Volatile Soil Inhalation (VSI) Various Various 2.40E+05 NLV NL					-		-											
Ambient Air Finite VSI for 5 Meter Source Thickness Various Various 7 56-06 NLV NLV NLV NLV NLV NLV NLV NLV S2.000 NLV NLV NLV NLV Ambient Air Finite VSI for 2 Meter Source Thickness Various 7 56-06 NLV									_									
Ambient Air Finite VSI for 2 Meter Source Trickness Various Various 7.56±08 NLV																		
Ambient Air Particulate Soil Inhalation (PSI) Various Various 5.2E+08 7.20E+05 3.30E+08 1.70E+08 2.60E+05 1.00E+08 2.00E+07 1.00E+08 2.00E+07 1.00E+08 2.00E+07 1.00E+08 0.70E+08 DIVENTION Screening Levels (up/Kg)																		
Direct Contact (DC) Various V																		
	Direct Contact (DC)						(1)						4.00E+05		2.60E+06		1.70E+08	
Toll Saturation Concentration Screening Levels (Csat) Various NL NA							/Kg)	•			·	·						
	Soil Saturation Concentration Screeni	ing Levels (Csat)		Various	NL	NL	NA	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA		
Residential Volatilization to Indoor Air Pathway Screening Level (VIAP) Various ID NA	Residential Volatilization to Indoor Air	Pathway Screening Level (VIAP)		Various	Various	ID	NA	NA	NA	NA	NA.	NA.	22 (M)	NA.	NA	NA		

BOLD

Criteria Exceeded

Value Exceeds Criteria

Value Exceeds Screening Level underline Screening Level Exceeded

μg/Kg Micrograms per Kilogram

bgs Below Ground Surface (feet)

<MDL Not detected at concentrations exceeding the laboratory method detection limit (MDL)

1 DRO evaluated for carbon chain lengths C10 through C20

NA Not Applicable / Not Analyzed

NL Not Listed

NLV Not Likely to Volatilize ID Insufficient Data

{G,X} Metal GSIP Criteria for Surface Water Not Protected for Drinking Water Use based on 301 mg/L CaCO3 Hardness: Station ID 90032, Saginaw River at Lafayette Street Bridge, Bay City, MI

{ } Other Alpha notation, please refer to EGLE Footnotes R 299.49 Footnotes for Generic Cleanup Criteria Tables, December 21, 2020

() Other Alpha notation, please refer to EGLE Guidance for the Vapor Intrusion Pathway Appendix D.1 Footnotes, September 4, 2020 (T) Refer to the Toxic Substance Control Act (TSCA), 40 CFR 761, Subparts D and G, as amended, to determine the applicability of TSCA cleanup standards.

Alternatives to compliance with the standards listed below are possible under Subpart D. New releases may be subject to the standards identified in Subpart G.

Use Part 201 soil direct contact criteria in the table below where TSCA standards are not applicable.

LAND USE CATEGORY	TSCA Subpart D	Part 201
Residential	1,000 µg/kg, or	4,000 μg/Kg
Nonresidential	10,000 μg/kg if capped	16,000 µg/Kg

TABLE 2 SUMMARY OF AREA B SOIL ANALYTICAL RESULTS MERCURY

108 ADAMS STREET SITE

108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT #01-14761-0-0002

	Mer (µg/	cury (Kg)		Mercury
	Chemical Abstract Se	ervice Number (CAS#)		7439976
Sample ID	Sample Date	Soil Type	Sample Depth (feet bgs)	Mercury
B-1		Sandy Clay	1.0-2.0	<60
B-2	8/22/23	Sandy Clay	1.0-2.0	<60
B-3		Sandy Clay	1.0-2.0	70
Generic Soil Cleanup Criteria	a Tables 2 and 3: Residential and Nor Screen	ing Levels, December 21, 2020	anup Criteria and Screening Levels/	Part 213 Risk-Based
Generic Soil Cleanup Criteria	a Tables 2 and 3: Residential and Nor Screen	n-Residential Part 201 Generic Cle	anup Criteria and Screening Levels/	Part 213 Risk-Based
Generic Soil Cleanup Criteria	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve	anup Criteria and Screening Levels/	Part 213 Risk-Based
Statewide Default Background Lev	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	
Statewide Default Background Lev	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130
Statewide Default Background Lev Clay Saginaw Background Levels	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of th	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130
Statewide Default Background Lev Clay Saginaw Background Levels Drinking Water Protection (DWP)	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of th	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130 500 1,700
Statewide Default Background Lev Clay Saginaw Background Levels Drinking Water Protection (DWP) Groundwater Surface Water Interf Soil Volatilization to Indoor Air Inf	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of the	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130 500 1,700 50 {M}; 1.2
Statewide Default Background Lev Clay Saginaw Background Levels Drinking Water Protection (DWP) Groundwater Surface Water Interf Soil Volatilization to Indoor Air Inl Ambient Air Infinite Source Volati	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of th face Protection (GSIP) halation (SVII)	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130 500 1,700 50 {M}; 1.2 48,000
Statewide Default Background Lev Clay Saginaw Background Levels Drinking Water Protection (DWP) Groundwater Surface Water Interf	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of th face Protection (GSIP) halation (SVII) le Soil Inhalation (VSI) Source Thickness	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130 500 1,700 50 {M}; 1.2 48,000 52,000
Statewide Default Background Lev Clay Saginaw Background Levels Drinking Water Protection (DWP) Groundwater Surface Water Interf Soil Volatilization to Indoor Air Int Ambient Air Infinite Source Volatil Ambient Air Finite VSI for 5 Meter	a Tables 2 and 3: Residential and Nor Screen EGLE Volatilization to Indoor A vels (2019 Soil Background and Use of the face Protection (GSIP) halation (SVII) le Soil Inhalation (VSI) Source Thickness	n-Residential Part 201 Generic Cle- ling Levels, December 21, 2020 ir Pathway (VIAP) Screening Leve Residential (µg/Kg)	anup Criteria and Screening Levels/	130 500 1,700 50 {M}; 1.2 48,000 52,000

	Criteria Exceeded
BOLD	Value Exceeds Criteria
	Value Exceeds Screening Level
underline	Screening Level Exceeded
μg/Kg	Micrograms per Kilogram
bgs	Below Ground Surface (feet)
	Other Aleks t-ti t

Residential Volatilization to Indoor Air Pathway Screening Level (VIAP)

{ } Other Alpha notation, please refer to EGLE Footnotes R 299.49 Footnotes for Generic Cleanup Criteria Tables, December 21, 2020

22 (M)

() Other Alpha notation, please refer to EGLE Guidance for the Vapor Intrusion Pathway Appendix D.1 Footnotes, September 4, 2020

TABLE 3 MAILYTOA RESALTS VOCE, PMAS, PCB, MAILYTOAL RESALTS VOCE, PMAS, PCB, MAY, AND DRO EVALUATION 100 ADMINISTRATE THE ADMINISTRATE ADMINISTRATE THE ADMINISTRATE ADMINISTRATE THE ADMINISTRATE ADMINISTRATE THE ADMINISTRATE A

				т —				9		· ·			9															
	Polynuclear Aromati Polychlorinated Michigan 10 and Diesel Ran	Compounds (VOCs), Hydrocarbons (PNAs), Biphenyls (PCBs), Metals (MI-10), pe Organics (DRO)		800	Anthraosme	Benzo(a)anthraoene	Benzo(a)pyrene	Benzo(b)fluoranthen	Berzo(g.h.) perylen	Berzok) fluoranthen	Chrysene	Fluorarthene	Indeno(1,2,3-od)pyrei	Phenantrone	Pyrene	Other PVAs	PCBs	Arsenio	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Setention	Slver	Zino	peo,
	Chemical Abstract 8	ervice Number (CAS#)		Various	120127	56553	50328	205992	191242	207089	218019	206440	193395	85018	129000	Various	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA.
Sample ID	Sample Date	Soil Type	Sample Depth (feet bgs)	VOCs													PCBs					м	-10					DRO
C-1		Sandy Clay/Clay Interface	4.0-5.0**	<mdl< td=""><td><110</td><td>160</td><td><220</td><td><220</td><td><220</td><td><220</td><td>230</td><td><110</td><td><220</td><td><110</td><td>130</td><td>≺MDL</td><td><mdl< td=""><td>1,000</td><td>20,000</td><td><200</td><td>8,500</td><td>5,800</td><td>2,300</td><td><50</td><td>200</td><td><100</td><td>10,000</td><td><27,000</td></mdl<></td></mdl<>	<110	160	<220	<220	<220	<220	230	<110	<220	<110	130	≺MDL	<mdl< td=""><td>1,000</td><td>20,000</td><td><200</td><td>8,500</td><td>5,800</td><td>2,300</td><td><50</td><td>200</td><td><100</td><td>10,000</td><td><27,000</td></mdl<>	1,000	20,000	<200	8,500	5,800	2,300	<50	200	<100	10,000	<27,000
C-2	1	Gravelly Sand/Silty Sand Interface	0.5-1.5°	<mdl< td=""><td><120</td><td>520</td><td>510</td><td>690</td><td>240</td><td>270</td><td>480</td><td>780</td><td><230</td><td>500</td><td>720</td><td>≺MDL</td><td><mdl< td=""><td>1,800</td><td>45,000</td><td><200</td><td>14,000</td><td>6,000</td><td>5,600</td><td>70</td><td>300</td><td><100</td><td>19,000</td><td><29,000</td></mdl<></td></mdl<>	<120	520	510	690	240	270	480	780	<230	500	720	≺MDL	<mdl< td=""><td>1,800</td><td>45,000</td><td><200</td><td>14,000</td><td>6,000</td><td>5,600</td><td>70</td><td>300</td><td><100</td><td>19,000</td><td><29,000</td></mdl<>	1,800	45,000	<200	14,000	6,000	5,600	70	300	<100	19,000	<29,000
	8/22/2023	Sandy Clay/Clay Interface	4.0-5.0**	<mdl< td=""><td><110</td><td><110</td><td><220</td><td><220</td><td><220</td><td><220</td><td><110</td><td><110</td><td><220</td><td><110</td><td><110</td><td><mdl< td=""><td><mdl< td=""><td>2,000</td><td>24,000</td><td><200</td><td>10,000</td><td>6,800</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<110	<110	<220	<220	<220	<220	<110	<110	<220	<110	<110	<mdl< td=""><td><mdl< td=""><td>2,000</td><td>24,000</td><td><200</td><td>10,000</td><td>6,800</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,000</td><td>24,000</td><td><200</td><td>10,000</td><td>6,800</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<>	2,000	24,000	<200	10,000	6,800	2,600	<60	200	<100	13,000	<28,000
C-3		Gravelly Sand/Sandy Clay Interface	0.5-1.5**	<mdl< td=""><td>220</td><td>840</td><td>860</td><td>1,200</td><td>320</td><td>430</td><td>830</td><td>1,500</td><td>310</td><td>1,200</td><td>1,400</td><td><mdl< td=""><td><mdl< td=""><td>22,000</td><td>48,000</td><td>300</td><td>5,200</td><td>120,000</td><td>190,000</td><td>80</td><td>700</td><td>200</td><td>88,000</td><td><29,000</td></mdl<></td></mdl<></td></mdl<>	220	840	860	1,200	320	430	830	1,500	310	1,200	1,400	<mdl< td=""><td><mdl< td=""><td>22,000</td><td>48,000</td><td>300</td><td>5,200</td><td>120,000</td><td>190,000</td><td>80</td><td>700</td><td>200</td><td>88,000</td><td><29,000</td></mdl<></td></mdl<>	<mdl< td=""><td>22,000</td><td>48,000</td><td>300</td><td>5,200</td><td>120,000</td><td>190,000</td><td>80</td><td>700</td><td>200</td><td>88,000</td><td><29,000</td></mdl<>	22,000	48,000	300	5,200	120,000	190,000	80	700	200	88,000	<29,000
		Sandy Clay/Clay Interface	4.5-5.5**	<mdl< td=""><td><120</td><td><120</td><td><220</td><td><220</td><td><220</td><td><220</td><td><120</td><td><120</td><td><220</td><td><120</td><td><120</td><td>≺MDL</td><td><mdl< td=""><td>4,500</td><td>55,000</td><td><200</td><td>20,000</td><td>12,000</td><td>5,200</td><td><60</td><td>500</td><td><100</td><td>14,000</td><td><30,000</td></mdl<></td></mdl<>	<120	<120	<220	<220	<220	<220	<120	<120	<220	<120	<120	≺MDL	<mdl< td=""><td>4,500</td><td>55,000</td><td><200</td><td>20,000</td><td>12,000</td><td>5,200</td><td><60</td><td>500</td><td><100</td><td>14,000</td><td><30,000</td></mdl<>	4,500	55,000	<200	20,000	12,000	5,200	<60	500	<100	14,000	<30,000
C-4R	11/8/2023	Gravelly Sand/Sand Interface	0.5-1.5*	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	4,530	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.
		Clay	4.5-5.5**	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	2,270	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.
C-6	8/23/2023	Clay Interface	14.0-15.0**	<mdl< td=""><td><110</td><td><110</td><td><220</td><td><220</td><td><220</td><td><220</td><td><110</td><td><110</td><td><220</td><td><110</td><td>130</td><td><mdl< td=""><td><mdl< td=""><td>1,300</td><td>23,000</td><td><200</td><td>10,000</td><td>6,300</td><td>2,400</td><td><50</td><td><200</td><td><100</td><td>30,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<110	<110	<220	<220	<220	<220	<110	<110	<220	<110	130	<mdl< td=""><td><mdl< td=""><td>1,300</td><td>23,000</td><td><200</td><td>10,000</td><td>6,300</td><td>2,400</td><td><50</td><td><200</td><td><100</td><td>30,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,300</td><td>23,000</td><td><200</td><td>10,000</td><td>6,300</td><td>2,400</td><td><50</td><td><200</td><td><100</td><td>30,000</td><td><28,000</td></mdl<>	1,300	23,000	<200	10,000	6,300	2,400	<50	<200	<100	30,000	<28,000
C-7		Gravelly Sand/Gravelly Sand Interface	0.5-1.5*	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	141,000	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
	_	Clay	4.5-5.5**	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	2,000	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-8	11/8/2023	Gravelly Sand	0.5-1.5*	NA.	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA NA	NA.	7,810	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA	NA.
	_	Clay Interface	4.5-5.5**	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	1,740	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-9		Gravelly Sand'Clayey Sand Interface	0.5-1.5**	NA.	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA NA	NA.	60,700	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA	NA.
		Clay	4.5-5.5**	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	2,000	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-10	4	Peat	1.0-1.5	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	5,980	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-11	-	Peat	1.0-1.5	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	2,860	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-12	1/23/2024	Sandy Clay	1.0-1.5	NA.	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	22,800	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA	NA.
C-13	1	Sand/Peat Interface	1.0-1.5	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	1,490	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.
C-14		Peat	1.0-1.5	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	16,200	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.
					Beneric Soil Cle	anup Criteria Tal	bles 2 and 3: R	osidential and N	anup Criteria Re Ion-Residential F Iatilization to Ind	Part 201 Generic	Cleanun Criteri	a and Screening	Levels/Part 21	3 Risk-Based Se	reening Levels,	December 21,	2020											
											rtial (µg/Kg)																	
Statewide Default Background Levels		AF Making Background Sugar		NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.	5,800	75,000 65,200	1,200	18,000	32,000 20,200	21,000	130	410	1,000	47,000 73,600	
	1019 Soil Background and Use of the 21 119 Soil Background and Use of the 20			NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	17,000	172,000	2,000	19,700	20,200	38,900	230	1,100	1,400	73,600	
Drinking Water Protection (Res DWP)				Various	41,000	NLL	NLL	NLL	NLL	NLL	NLL	7.300+05	NLL	55,000	4.800+05	Various	NLL	4,600	1.300+06	6,000	30,000	5.800+05	7.00E+05	1,700	4,000	4,500	2.400+05	
Groundwater Surface Water Interface	Protection (GSIP)			Various	ID	NLL	NLL	NLL	NLL	NLL	NLL	5,500	NLL	2,100	ID	Various	NLL	4,600	9.3E+05 (G)	6,100 (G,X)	3,300	1.3E+05 (G)	5.9E+05 (G,X)	50 (M): 1.2	400	100 (M); 27	3.0E+05 (G)	
Soil Volatilization to Indoor Air Inhalat				Various	1.0E+9-(D)	NLV	NLV	ID	NLV	NLV	ID .	1.0E+9-{D}	NLV	2.85+05	1.00+9 (0)	Various	3.06+06	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV	
Ambient Air Infinite Source Volatile So				Various	1.4E+09	NLV	NLV	ID	NLV	NLV	10	7.400+08	NLV	1.60E+05	6.50+08	Various	2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter Sou Ambient Air Finite VSI for 2 Meter Sou				Various	1.45+09	NLV NLV	NLV MV	ID ID	NLV M.V	NLV NLV	ID ID	7.4E+05	NLV NLV	1.60E+05	6.5E+08	Various	7.9E+05	NLV N.V	NLV NLV	NLV NLV	NLV M V	NLV NLV	NLV M.V	52,000	NLV M.V	NLV NLV	NLV NLV	
Ambient Air Particulate Soil Inhalation				Various	1.4E+09 6.7E+10	NLV ID	1.5E+06	ID ID	8.0E+08	NLV	ID ID	7.4E+08 9.3E+09	NLV ID	1.60E+05 6.7E+06	6.5E+08 6.7E+09	Various	7.9E+06 5.2E+06	7.20E+05	3.30E+08	1.70E+06	NLV 2.60E+05	1.30E+08	1.00E+08	52,000 2.00E+07	1.30E+08	6.70E+06	ID ID	
Direct Contact (Res DC)				Various	2.30+08	20,000	2,000	20,000	2.50+06	2.000+05	2.00+06	4.6E+07	20,000	1.65+06	2.95+07	Various	(7)	7,600	3.700+07	5.500+05	2.500+06	2.005+07	4.00E+05	1.600+05	2.600+06	2.500+06	1.705+08	
Drinking Water Protection (Nonres DV	wp			Various	41.000	MI	MI	MI	MI	Nonresid	ential (µg/Kg)	7.705+05	MI	1000405	4805405	Various	MI	4500	1.705+05	6000	20.000	5,000,005	7005405	1700	4000	4700	5.000+05	
Soil Volatifization to Indoor Air Inhalat					41,000 1.0E+9 (D)	NLV NLV	NLU NLV			NLV NLV	NLL ID	7.30E+05 1.0E+9 (D)	NLV NLV	1.60E+05 5.1E+06	4.80E+05 1.0E+9 (D)		NLL 1.66+07	-,		6,000 NLV	30,000 NLV		7.00E+05	1,700	4,000 NLV	4,500 NLV	5.00E+05	
Ambient Air Infinite Source Volatile Sc				Various	1.0E+9 (D) 1.6E+09	NLV NLV	NLV NLV	ID ID	NLV NLV	MV	ID ID	1.0E+9 (D) 8.9E+08	NLV NLV	5.1E+05 1.90E+05	7.8E+08	Various	8.10E+07	NLV N.V	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	62,000	NLV NLV	NLV NLV	NLV NLV	
Ambient Air Finite VSI for 5 Meter Sou				Various	1.6E+09	NLV	NLV NLV	ID ID	NLV	NLV	10	8.85+08	NLV	1.900+05	7.8E+08	Various	2.85+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 2 Meter Sou				Various	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	8.85+08	NLV	1.90E+05	7.8E+08	Various	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Particulate Soil Inhalation	n (Nonres PSI)			Various	2.90+10	ID.	1.95+05	ID.	3.50+08	10	ю	4.1E+09	ID	2.90+06	2.95+09	Various	6.50+06	9.100+05	1.500+08	2.200+05	2.400+05	5.900+07	4.40E+07	8.800+05	5.900+07	2.900+06	10	
Direct Contact (Nonres DC)				Various	7.3E+08	80,000	8,000	80,000	7.0E+06	8.000+05	8.00+06	1.30+08	80,000	5.25+05	8.45+07	Various	(7)	37,000	1.300+08	2.100+05	9.200+06	7.306+07	9.00+5 (00)	5.80E+05	9.600+05	9.000+06	6.300+08	
				_						Screening	Levels (µg/Kg)						_											
Soil Saturation Concentration Screen Residential Volatilization to Indoor Air				Various	NL 1.30E+07	NL 1.60E+05 (MM)	NL.	NL.	NL NA	NL NA	NL NL	NL NL	NL.	NL 1,700	NL 2.50E+07	Various Various	NL ID	NL NA	NL.	NL.	NL NA	NL NA	NL NA	NL NA	NL NA	NL NA	NL NA	
Nonresidential Volatilization to Indoor Air				Various	2.200+08	1.50E+05 (MM)	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	1,700	2.50E+07 4.40E+08	Various	D D	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	22 (M)	NA NA	NA.	NA NA	
	James, according cover (viso)			various	A 2002 + CO	1.168407		-04		_ ~				24,000	1.446.400	vwious					1 ~~			24 (60)			- *	

| Water | Wate

LAND USE CATEGORY	TSCA Subpart D	Part 201
Residential	1,000 µg/kg, or	4,000 µg/Kg
Nonresidential	10,000 µg/kg if capped	16,000 µg/Kg

TABLE 4 SUMMARY OF AREA DOE, MAILYTEAL RESULTS VOCA, PMAS, PCIR, MHT, AND DRO EVALUATION 108 ADAMS STRET STR 108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MCHIGAN PM MOLECULE F01-1471-6-06

		Compounds (VOCs), : Hydrocarbons (PNAs),				94		ene	8.	0.00			теле	_														
	Polychlorinated Michigan 10 and Diesel Rang Eval	Hydrocarbons (PCBs), Metals (MI-10), je Organics (DRO) uation		NOO3	Anthracene	Benzo(a)anthrao	Benzo(a)pyren	Berzolb Buorant	Berzo(g.h.i)peryl	Berzok) fluorant	Orrysene	Fluoranthene	Indeno(1,2,3-cd)[9]	Phenanthrene	Pyrene	Other PNAs	POBs	Arsenic	Berlum	Cadmium	Gronium	Copper	29	Mercury	Selenium	Silver	Zino	DRO'
	Chemical Abstract S	iervice Number (CAS#)		Various	120127	56553	50328	205992	191242	207089	218019	206440	193395	85018	129000	Various	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA
Sample ID	Sample Date	Soil Type	Sample Depth (feet bgs)	VOCs						PN	lAs .						PCBs					м	-10					DRO
D-1	8/21/2023	Sandy Clay/Clay Interface	3.5-4.5	<mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<></th></mdl<>	<mdl< th=""><th>2,200</th><th>25,000</th><th><200</th><th>10,000</th><th>8,100</th><th>2,700</th><th><50</th><th>300</th><th><100</th><th>15,000</th><th><27,000</th></mdl<>	2,200	25,000	<200	10,000	8,100	2,700	<50	300	<100	15,000	<27,000
		Sandy Clay/Clay Interface	11.0-12.0	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,300</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<>	2,300	28,000	<200	12,000	7,700	3,300	<60	300	<100	19,000	<28,000
D-2	8/21/2023	Sandy Clay/Clay Interface	1.5-2.5	<mdl< td=""><td>160</td><td>790</td><td>700</td><td>840</td><td>250</td><td>380</td><td>700</td><td>1,400</td><td>250</td><td>850</td><td>1,200</td><td><mdl< td=""><td><mdl< td=""><td>7,500</td><td>76,000</td><td>300</td><td>8,000</td><td>21,000</td><td>220,000</td><td><60</td><td>600</td><td><100</td><td>92,000</td><td><29,000</td></mdl<></td></mdl<></td></mdl<>	160	790	700	840	250	380	700	1,400	250	850	1,200	<mdl< td=""><td><mdl< td=""><td>7,500</td><td>76,000</td><td>300</td><td>8,000</td><td>21,000</td><td>220,000</td><td><60</td><td>600</td><td><100</td><td>92,000</td><td><29,000</td></mdl<></td></mdl<>	<mdl< td=""><td>7,500</td><td>76,000</td><td>300</td><td>8,000</td><td>21,000</td><td>220,000</td><td><60</td><td>600</td><td><100</td><td>92,000</td><td><29,000</td></mdl<>	7,500	76,000	300	8,000	21,000	220,000	<60	600	<100	92,000	<29,000
		Sandy Clay/Clay Interface	11.5-12.5	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,300</td><td>27,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,900</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<>	2,300	27,000	<200	11,000	6,900	2,900	<50	300	<100	17,000	<27,000
				Generic Soil Cl	eanup Criteria	Tables 2 and	: Residential EG	Cleanup Cri and Non-Resid LE Volatilizatio	teria Requiren dential Part 20: n to Indoor Air	1 Generic Clea	nup Criteria a	nd Screening I	evels/Part 213	Risk-Based S	creening Leve	als, December	21, 2020											
										Residential (µ	g/Kg)																	
Statewide Default Background Levels				NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000	
Sand Saginaw Background Levels (20	019 Soil Background and Use of the 2	2005 Michigan Background Survey)		NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA NA	17,000	65,200	2,000	19,700	20,200	18,000	230	1,100	1,400	73,600	
Clay Saginaw Background Levels (20	19 Soil Background and Use of the 20	005 Michigan Background Survey)		NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	17,100	172,000	2,000	43,500	32,200	38,900	500	1,100	1,000	91,900	
Drinking Water Protection (DWP)				Various	41,000	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	NLL	56,000	4.80E+05	Various	NLL	4,600	1.30E+06	6,000	30,000	5.80E+05	7.00E+05	1,700	4,000	4,500	2.40E+05	
Groundwater Surface Water Interface	Protection (GSIP)			Various	ID	NLL	NLL	NLL	NLL	NLL	NLL	5,500	NLL	2,100	ID	Various	NLL	4,600	9.3E+05 (G)	6,100 (G,X)	3,300	1.3E+05 (G)	5.9E+06 (G,X)	50 (M); 1.2	400	100 (M); 27	3.0E+05 (G)	
Soil Volatilization to Indoor Air Inhala	ition (SVII)			Various	1.0E+9 (D)	NLV	NLV	10	NLV	NLV	В	1.0E+9 (D)	NLV	2.8E+06	1.0E+9 (D)	Various	3.0E+06	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV	
Ambient Air Infinite Source Volatile S	ioil Inhalation (VSI)			Various	1.4E+09	NLV	NLV	10	NLV	NLV	В	7.40E+08	NLV	1.60E+05	6.5E+08	Various	2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter Sou	rce Thickness			Various	1.4E+09	NLV	NLV	10	NLV	NLV	D	7.4E+08	NLV	1.60E+05	6.5E+08	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 2 Meter Sou	rce Thickness			Various	1.4E+09	NLV	NLV	D	NLV	NLV	D	7.4E+08	NLV	1.60E+05	6.5E+08	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Particulate Soil Inhalation	n (PSI)			Various	6.7E+10	D	1.5E+06	ID.	8.0E+08	D	D	9.3E+09	ID.	6.7E+06	6.7E+09	Various	5.2E+06	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	2.00E+07	1.30E+08	6.70E+06	D	
Direct Contact (DC)				Various	2.3E+08	20,000	2,000	20,000	2.5E+05	2.00E+05	2.0E+05	4.6E+07	20,000	1.6E+06	2.9E+07	Various	(1)	7,600	3.70E+07	5.50E+05	2.50E+06	2.00E+07	4.00E+05	1.60E+05	2.60E+06	2.50E+06	1.70E+08	
				_					N	ionresidential	(µg/Kg)																	
Drinking Water Protection (Nonres DV				Various	41,000	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	NLL	1.60E+05	4.80E+05	Various	NLL	4,600	1.30E+06	5,000	30,000	5.80E+05	7.00E+05	1,700	4,000	4,500	5.00E+05	
Soil Volatilization to Indoor Air Inhala				Various	1.0E+9 (D)	NLV	NLV	ID.	NLV	NLV	р	1.0E+9 (D)	NLV	5.1E+06	1.0E+9 (D)	Various	1.6E+07	NLV	NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV	
Ambient Air Infinite Source Volatile S				Various	1.6E+09	NLV	NLV	10	NLV	NLV	В	8.9E+08	NLV	1.90E+05	7.8E+08	Various	8.10E+05	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter Sou				Various	1.6E+09	NLV	NLV	10	NLV	NLV	В	8.8E+08	NLV	1.90E+05	7.8E+08	Various	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 2 Meter Sou				Various	1.6E+09	NLV	NLV	ID	NLV	NLV	D	8.8E+08	NLV	1.90E+05	7.8E+08	Various	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Particulate Soil Inhalation	n (Nonres PSI)			Various	2.9E+10	D	1.9E+06	10	3.5E+05	D	D	4.1E+09	ID .	2.9E+06	2.9E+09	Various	6.5E+06	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	8.80E+06	5.90E+07	2.90E+06	10	
Direct Contact (Nonres DC)				Various	7.3E+08	80,000	8,000	80,000	7.0E+05	8.00E+05	8.0E+05	1.3E+08	80,000	5.2E+06	8.4E+07	Various	(1)	37,000	1.30E+08	2.10E+05	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.000+06	6.30E+08	
				_						reening Level																		
Soil Saturation Concentration Screen				Various	NL.	NL.	NL	NL	NL.	NL	NL.	NL.	NL.	NL	NL.	NL.	NA.	NA.	NA	NA.	NA NA	NA.	NA.	NA	NA.	NA	NA NA	
Residential Volatilization to Indoor Ai				Various	1.30E+07	1.60E+05 (MM)	NA.	NA	NA.	NA .	NA.	NA.	NA.	1,700	2.50E+07	2.60E+05 (EE)	D	NA.	NA.	NA NA	NA.	NA	NA NA	22 (M)	NA NA	NA NA	NA NA	
Nonresidential Volatilization to Indoo	or Air Pathway Screening Level (VIAP)	1		Various	2.20E+08	1.10E+07	NA.	NA NA	NA.	NA.	NA NA	NA.	NA.	29,000	4.40E+05	3.10E+05 (EE)	ID	NA.	NA.	NA.	NA.	NA NA	NA.	390	NA NA	NA.	NA.	

LAND USE CATEGORY	TSCA Subpart D	Part 201
Residential	1,000 µg/kg, or	4,000 µg/Kg
Nonresidential	10,000 µg/kg if capped	16,000 µg/Kg

TABLE 5 SUMMARY OF AREA E SOIL ANALYTICAL RESULTS PNAS, MI-10, AND DRO EVALUATION 108 ADAMS STREET SITE 108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT 891-14761-4-0002

	Polynuclear Aromatic Hydrocarbons (PNAs), Michigan 10 Metals (Mi-10), and Diesel Range Organics (DRO) Evaluation (ugl/Kg) Chemical Abstract Service Number (CAS#)						Pyrene	Other PNAs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc	DRO¹
	Chemical Abstract S	Service Number (CAS#)		218019	206440	85018	129000	Various	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA
Sample ID	Sample Date	Soil Type	Sample Depth (feet bgs)		•	PNAs	•			•	•	•	M	I-10		•	•	•	DRO
		Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>2,300</td><td>28,000</td><td><200</td><td>9,300</td><td>7,000</td><td>2,600</td><td><50</td><td>200</td><td><100</td><td>12,000</td><td><27,000</td></mdl<>	2,300	28,000	<200	9,300	7,000	2,600	<50	200	<100	12,000	<27,000
E-1	8/21/23	Sand/Clay Interface	7.0-8.0	<110	<110	<110	<110	<mdl< td=""><td>900</td><td>19,000</td><td><200</td><td>5,100</td><td>2,900</td><td>1,200</td><td><50</td><td><mdl< td=""><td><100</td><td>6,400</td><td><27,000</td></mdl<></td></mdl<>	900	19,000	<200	5,100	2,900	1,200	<50	<mdl< td=""><td><100</td><td>6,400</td><td><27,000</td></mdl<>	<100	6,400	<27,000
		Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>2,300</td><td>33,000</td><td><200</td><td>11,000</td><td>7,700</td><td>3,000</td><td><50</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<>	2,300	33,000	<200	11,000	7,700	3,000	<50	300	<100	15,000	<28,000
E-2	8/21/23	Sandy Clay/Clay Interface	9.5-10.5	<110	<110	<110	<110	<mdl< td=""><td>4,200</td><td>32,000</td><td><200</td><td>12,000</td><td>8,500</td><td>3,700</td><td><60</td><td>300</td><td><100</td><td>19,000</td><td><28,000</td></mdl<>	4,200	32,000	<200	12,000	8,500	3,700	<60	300	<100	19,000	<28,000
		Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>1,500</td><td>23,000</td><td><200</td><td>8,900</td><td>5,200</td><td>2,200</td><td><60</td><td>200</td><td><100</td><td>10,000</td><td><27,000</td></mdl<>	1,500	23,000	<200	8,900	5,200	2,200	<60	200	<100	10,000	<27,000
E-3	8/21/23	Sandy Clay/Clay Interface	10.5-11.5	<110	<110	<110	<110	<mdl< td=""><td>1,900</td><td>30,000</td><td><200</td><td>10,000</td><td>6,900</td><td>3,000</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<>	1,900	30,000	<200	10,000	6,900	3,000	<60	300	<100	15,000	<28,000
		Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>11,000</td><td>30,000</td><td><200</td><td>12,000</td><td>8,600</td><td>23,000</td><td><50</td><td>300</td><td><100</td><td>18,000</td><td><28,000</td></mdl<>	11,000	30,000	<200	12,000	8,600	23,000	<50	300	<100	18,000	<28,000
E-4	8/21/23	Clay Interface	8.5-9.5	<110	<110	<110	<110	<mdl< td=""><td>2,700</td><td>34,000</td><td><200</td><td>14,000</td><td>8,600</td><td>3,700</td><td><60</td><td>300</td><td><100</td><td>23,000</td><td><28,000</td></mdl<>	2,700	34,000	<200	14,000	8,600	3,700	<60	300	<100	23,000	<28,000
		Sandy Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>1,400</td><td>21,000</td><td><200</td><td>8,200</td><td>5,500</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>23,000</td><td><28,000</td></mdl<>	1,400	21,000	<200	8,200	5,500	2,600	<60	200	<100	23,000	<28,000
E-5	8/21/23		6.0-7.0	<110	<110	<110	<110	<mdl< td=""><td>1,400</td><td>29,000</td><td><200</td><td>11,000</td><td>7,300</td><td>2,900</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><27,000</td></mdl<>	1,400	29,000	<200	11,000	7,300	2,900	<60	200	<100	16,000	<27,000
		Sandy Clay/Clay Interface																	
E-6	8/21/23	Sandy Clay	1.0-2.0	<110	<110	<110	<110	<mdl< td=""><td>2,000</td><td>27,000</td><td><200</td><td>11,000</td><td>7,300</td><td>2,900</td><td><60</td><td>200</td><td><100</td><td>15,000</td><td><28,000</td></mdl<>	2,000	27,000	<200	11,000	7,300	2,900	<60	200	<100	15,000	<28,000
		Sandy Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>1,300</td><td>14,000</td><td><200</td><td>6,200</td><td>4,300</td><td>1,900</td><td><60</td><td><mdl< td=""><td><100</td><td>8,500</td><td><28,000</td></mdl<></td></mdl<>	1,300	14,000	<200	6,200	4,300	1,900	<60	<mdl< td=""><td><100</td><td>8,500</td><td><28,000</td></mdl<>	<100	8,500	<28,000
E-7	8/21/23	Clay	4.5-5.5	<110	<110	<110	<110	<mdl< td=""><td>1,100</td><td>33,000</td><td><200</td><td>12,000</td><td>5,500</td><td>2,800</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><28,000</td></mdl<>	1,100	33,000	<200	12,000	5,500	2,800	<60	300	<100	15,000	<28,000
E-8	8/21/23	Clay	4.5-5.5**	140	270	180	330	<mdl< td=""><td>3,400</td><td>33,000</td><td><200</td><td>26,000</td><td>11,000</td><td>4,400</td><td><60</td><td>300</td><td><100</td><td>570,000</td><td>30,000</td></mdl<>	3,400	33,000	<200	26,000	11,000	4,400	<60	300	<100	570,000	30,000
		Clay	7.0-8.0	<110	<110	<110	<110	<mdl< td=""><td>1,700</td><td>25,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,800</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<>	1,700	25,000	<200	11,000	6,900	2,800	<50	300	<100	14,000	<27,000
		0		Cleanup Crite	ria Requiremen	ts for Respons	e Activity (R 29	9.1 - R 299.50)	- (D1 040 D'-1-	D10									
		Generic Soil Cleanup C	riteria Tables 2 and 3: Residential a EGLE	E Volatilization	to Indoor Air Pa	thway (VIAP) S	creening Level	reening Levels s, September 4	, 2020	-Based Screen	ng Levels, Dec	ember 21, 2020	,						
					R	esidential (µg/K	(g)												
Statewide Default Background Leve	els			NA	NA.	NA	NA	NA.	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000	
	(2019 Soil Background and Use of the			NA	NA NA	NA NA	NA	NA	17,000	66,200	2,000	19,700	20,200	18,000	230	1,100	1,400	73,600	
Clay Saginaw Background Levels (2019 Soil Background and Use of the	2005 Michigan Background Survey)		NA	NA NA	NA	NA	NA	17,100	172,000	2,000	43,500	32,200	38,900	500	1,100	1,000	91,900	_
Drinking Water Protection (DWP)				NLL	7.30E+05	56,000	4.80E+05	Various	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	2.40E+06	4
Groundwater Surface Water Interfa				NLL ID	5,500	2,100	ID	Various	4,600 NLV	9.3E+05 (G) NLV	6,100 (G,X) NLV	3,300 NLV	1.3E+05 (G) NLV	5.9E+06 (G,X)	50 (M); 1.2 48.000	400 NLV	100 (M); 27 NLV	3.0E+05 (G) NLV	
Soil Volatilization to Indoor Air Inha				-	1.0E+9 (D) 7.40E+08	2.8E+06	1.0E+9 (D)	Various	NLV NLV	NLV NLV				NLV		NLV NLV			4
Ambient Air Infinite Source Volatile Ambient Air Finite VSI for 5 Meter S				ID ID	7.4E+08	1.60E+05	6.5E+08 6.5E+08	Various Various	NLV NLV	NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	52,000 52,000	NLV	NLV NLV	NLV NLV	-
Ambient Air Finite VSI for 2 Meter S				ID	7.4E+08	1.60E+05	6.5E+08	Various	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	-
Ambient Air Particulate Soil Inhalati						6.7E+06	6.7E+09	Various	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	2.00E+07	1.30E+08	6.70E+06	ID	1
Direct Contact (DC)						1.6E+06	2.9E+07	Various	7,600	3.70E+07	5.50E+05	2.50E+06	2.00E+07	4.00E+05	1.60E+05	2.60E+06	2.50E+06	1.70E+08	
				No	nresidential (µg	/Kg)													
Drinking Water Protection (Nonres						1.60E+05	4.80E+05	Various	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06	
	lization to Indoor Air Inhalation (Nonres SVII) Lir Infinite Source Volatile Soil Inhalation (Nonres VSI)					5.1E+06	1.0E+9 (D)	Various	NLV	NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV	
				ID	8.9E+08	1.90E+05	7.8E+08	Various	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter S Ambient Air Finite VSI for 2 Meter S				ID ID	8.8E+08 8.8E+08	1.90E+05 1.90E+05	7.8E+08 7.8E+08	Various Various	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	62,000	NLV NLV	NLV NLV	NLV NLV	-
Ambient Air Particulate Soil Inhalati				ID ID	8.8E+08 4.1E+09	1.90E+05 2.9E+06	7.8E+08 2.9E+09	Various	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	62,000 8.80E+06	5.90E+07	2.90E+06	ID.	
Direct Contact (Nonres DC)				8.0E+06	1.3E+08	5.2E+06	8.4E+07	Various	37,000	1.30E+08	2.10E+06	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.00E+06	6.30E+08	
, , , , , , , , , ,						ening Levels (µ	1	-		· · · · · ·									
Residential Volatilization to Indoor	Air Pathway Screening Level (VIAP)			NA NA	NA NA	1,700	2.50E+07	Various	NA NA	NA.	NA.	NA.	NA.	NA NA	22 (M)	NA	NA.	NA.	
	.,			1	-		 												-

NA 29,000 4.40E+08 Various NA NA NA NA NA NA

BOLD

Criteria Exceeded

Value Exceeds Criteria

Value Exceeds Screening Level

underline Screening Level Exceeded

μg/Kg Micrograms per Kilogram

bgs Below Ground Surface (feet)

* Results compared to Sand Huron Erie Background Levels

** Results compared to Clay Huron Erie Background Levels

<MDL Not detected at concentrations exceeding the laboratory method detection limit (MDL)</p>

NA Not Applicable / Not Analyzed

NL Not Listed

Nonresidential Volatilization to Indoor Air Pathway Screening Level (VIAP)

NLV Not Likely to Volatilize

ID Insufficient Data

(G.X) Metal GSIP Criteria for Surface Water Not Protected for Drinking Water Use based on 301 mg/L CaCO3 Hardness: Station ID 90032, Saginaw River at Lafayette Street Bridge, Bay City, MI

NA

{ } Other Alpha notation, please refer to EGLE Footnotes R 299.49 Footnotes for Generic Cleanup Criteria Tables, December 21, 2020

() Other Alpha notation, please refer to EGLE Guidance for the Vapor Intrusion Pathway Appendix D.1 Footnotes, September 4, 2020

TABLE 6 SUMMARY OF AREA F SOIL ANALYTICAL RESULTS VOCS, PNAS, PCBS, MI-IO, AND DRO EVALUATION 108 ADAMS STREET SITE 108 ADAMS ST, 101-109 NORTH JEFFERSON 40F, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT #01-14761-00002

				1													
	Volatile Organic Co Polynuclear Aromatic I Polychlorinated E Michigan 10 M and Diesel Range Evalu	Hydrocarbons (PNAs), Biphenyls (PCBs), letals (MI-10), o Organics (DRO) ation		VOCs	PNAs	PCBs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc	DRO¹
	Chemical Abstract Se	rvice Number (CAS#)		Various	Various	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA
Sample ID	Sample Date	Soil Type	Sample Depth (feet bgs)	VOCs	PNAs	PCBs					мі	-10					DRO
F-1		Sandy Clay/Clay Interface	3.5-4.5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,500</th><th>23,000</th><th><200</th><th>10,000</th><th>5,700</th><th>2,400</th><th><50</th><th><200</th><th><100</th><th>22,000</th><th><27,000</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,500</th><th>23,000</th><th><200</th><th>10,000</th><th>5,700</th><th>2,400</th><th><50</th><th><200</th><th><100</th><th>22,000</th><th><27,000</th></mdl<></th></mdl<>	<mdl< th=""><th>1,500</th><th>23,000</th><th><200</th><th>10,000</th><th>5,700</th><th>2,400</th><th><50</th><th><200</th><th><100</th><th>22,000</th><th><27,000</th></mdl<>	1,500	23,000	<200	10,000	5,700	2,400	<50	<200	<100	22,000	<27,000
F-1		Clay	14.0-15.0	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,200</td><td>29,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,200</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,200</td><td>29,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,200</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,200</td><td>29,000</td><td><200</td><td>12,000</td><td>7,700</td><td>3,200</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<>	2,200	29,000	<200	12,000	7,700	3,200	<60	200	<100	19,000	<28,000
50	8/23/2023	Gravelly Sand/Clay Interface	3.5-4.5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,200</th><th>5,500</th><th><200</th><th>3,000</th><th>23,000</th><th>1,800</th><th><50</th><th><200</th><th><100</th><th>12,000</th><th><26,000</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,200</th><th>5,500</th><th><200</th><th>3,000</th><th>23,000</th><th>1,800</th><th><50</th><th><200</th><th><100</th><th>12,000</th><th><26,000</th></mdl<></th></mdl<>	<mdl< th=""><th>1,200</th><th>5,500</th><th><200</th><th>3,000</th><th>23,000</th><th>1,800</th><th><50</th><th><200</th><th><100</th><th>12,000</th><th><26,000</th></mdl<>	1,200	5,500	<200	3,000	23,000	1,800	<50	<200	<100	12,000	<26,000
F-2	Clay Interface 10.5-11.5				<mdl< th=""><th><mdl< th=""><th>1,000</th><th>18,000</th><th><200</th><th>6,500</th><th>3,500</th><th>1,500</th><th><50</th><th><200</th><th><100</th><th>7,200</th><th><27,000</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>18,000</th><th><200</th><th>6,500</th><th>3,500</th><th>1,500</th><th><50</th><th><200</th><th><100</th><th>7,200</th><th><27,000</th></mdl<>	1,000	18,000	<200	6,500	3,500	1,500	<50	<200	<100	7,200	<27,000
E-3	Sandy Clay 0.5-1.5				<mdl< td=""><td><mdl< td=""><td>2,300</td><td>29,000</td><td><200</td><td>12,000</td><td>6,900</td><td>9,200</td><td><60</td><td>200</td><td><100</td><td>26,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,300</td><td>29,000</td><td><200</td><td>12,000</td><td>6,900</td><td>9,200</td><td><60</td><td>200</td><td><100</td><td>26,000</td><td><28,000</td></mdl<>	2,300	29,000	<200	12,000	6,900	9,200	<60	200	<100	26,000	<28,000
1.0	F-3 Sandy Clay/Clay Interface 4.5-5.5				<mdl< td=""><td><mdl< td=""><td>2,500</td><td>31,000</td><td><200</td><td>12,000</td><td>7,500</td><td>3,200</td><td><60</td><td>300</td><td><100</td><td>17,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,500</td><td>31,000</td><td><200</td><td>12,000</td><td>7,500</td><td>3,200</td><td><60</td><td>300</td><td><100</td><td>17,000</td><td><28,000</td></mdl<>	2,500	31,000	<200	12,000	7,500	3,200	<60	300	<100	17,000	<28,000
	Cleanup C Generic Soll Cleanup Criteria Tables 2 and 3: Residential and Non-Re EGLE Volatilizat						creening Leve	ls/Part 213 Ris	k-Based Scree	ning Levels, De	cember 21, 202	20					
				R	tesidential (µg/l	(g)											
Statewide Default Background Levels	s			NA	NA	NA	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000	
Sand Saginaw Background Levels (2	2019 Soil Background and Use of the	2005 Michigan Background Survey)		NA	NA	NA	17,000	66,200	2,000	19,700	20,200	18,000	230	1,100	1,400	73,600	
Clay Saginaw Background Levels (20	019 Soil Background and Use of the 2	2005 Michigan Background Survey)		NA	NA	NA	17,100	172,000	2,000	43,500	32,200	38,900	500	1,100	1,000	91,900	
Drinking Water Protection (DWP)				3.00E+05	3.00E+05	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	2.40E+06	
Groundwater Surface Water Interface				8,700	8,700	NLL	4,600	9.3E+05 (G)	6,100 {G,X}	3,300	1.3E+05 (G)	5.9E+06 {G,X}	50 (M); 1.2	400	100 (M); 27	3.0E+05 {G}	
Soil Volatilization to Indoor Air Inhala				1.9E+08	1.9E+08	3.0E+06	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV	
Ambient Air Infinite Source Volatile S				8.1E+07	8.1E+07	2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter So				8.1E+07	8.1E+07	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 2 Meter So Ambient Air Particulate Soil Inhalatio				8.1E+07 1.4E+10	8.1E+07	7.9E+06	NLV 7.00F.05	NLV	NLV	NLV 0.00E+0E	NLV	NLV 4.00E+00	52,000	NLV 4.00E+00	NLV 0.705 - 00	NLV ID	
Direct Contact (DC)	Jii (F-Si)			1.4E+10 4.1E+07	1.4E+10 4.1E+07	5.2E+06 {T}	7.20E+05 7,600	3.30E+08 3.70E+07	1.70E+06 5.50E+05	2.60E+05 2.50E+06	1.30E+08 2.00E+07	1.00E+08 4.00E+05	2.00E+07 1.60E+05	1.30E+08 2.60E+06	6.70E+06 2.50E+06	1.70E+08	
Direct Contact (DC)					nresidential (µg		7,000	3.70E+07	3.50E+05	2.00E+06	2.002+07	4.00E+05	1.00E+05	2.00E+06	2.50E+00	1.70E+08	
Drinking Water Protection (Nonres D	WP)			8.80E+05	8.80E+05	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06	
Soil Volatilization to Indoor Air Inhala				3.5E+08	3.5E+08	1.6E+07	NLV	NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV	
Ambient Air Infinite Source Volatile S	Soil Inhalation (Nonres VSI)			9.7E+07	9.7E+07	8.10E+05	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 5 Meter So	Air Infinite Source Volatile Soil Inhalation (Nonres VSI) Air Finite VSI for 5 Meter Source Thickness			9.7E+07	9.7E+07	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Finite VSI for 2 Meter So	ir Finite VSI for 2 Meter Source Thickness			9.7E+07	9.7E+07	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV	
Ambient Air Particulate Soil Inhalatio	ur Particulate Soil Inhalation (Nonres PSI)			6.2E+09	6.2E+09	6.5E+06	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	8.80E+06	5.90E+07	2.90E+06	ID	
Direct Contact (Nonres DC)				1.3E+08	1.3E+08	{T}	37,000	1.30E+08	2.10E+06	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.00E+06	6.30E+08	
				Scre	ening Levels (ıg/Kg)											
Soil Saturation Concentration Screen	tion Concentration Screening Levels (Csat)				Various	NL	NA	NA	NA	NA	NA	NL	NA	NA.	NA	NA	
Residential Volatilization to Indoor A	atilization to Indoor Air Pathway Screening Level (VIAP)				2.00E+05	2.00E+05	NA	NA	NA	NA	NA	NA	22 (M)	NA.	NA	NA	
Nonresidential Volatilization to Indoo	olatilization to Indoor Air Pathway Screening Level (VIAP)				3.60E+06	3.60E+06	NA	NA	NA	NA	NA	NA	390	NA	NA	NA	

ВО	LD

Criteria Exceeded Value Exceeds Criteria

Value Exceeds Screening Level

Screening Level Exceeded

underline μg/Kg Micrograms per Kilogram

bgs Below Ground Surface (feet)

* Results compared to Sand Huron Erie Background Levels

** Results compared to Clay Huron Erie Background Levels

<MDL Not detected at concentrations exceeding the laboratory method detection limit (MDL)

NA Not Applicable / Not Analyzed

NL Not Listed

NLV Not Likely to Volatilize

ID Insufficient Data

(G,X) Metal GSIP Criteria for Surface Water Not Protected for Drinking Water Use based on 301 mg/L CaCO3 Hardness: Station ID 90032, Saginaw River at Lafayette Street Bridge, Bay City, MI

{ } Other Alpha notation, please refer to EGLE Footnotes R 299.49 Footnotes for Generic Cleanup Criteria Tables, December 21, 2020

() Other Alpha notation, please refer to EGLE Guidance for the Vapor Intrusion Pathway Appendix D.1 Footnotes, September 4, 2020

Refer to the Toxic Substance Control Act (TSCA), 40 CFR 761, Subparts D and G, as amended, to determine the applicability of TSCA cleanup standards. Alternatives to compliance with the standards listed below are possible under Subpart D. New releases may be subject to the standards identified in Subpart G. Use Part 201 soil direct contact criteria in the table below where TSCA standards are not applicable.

LAND USE CATEGORY	TSCA Subpart D	Part 201
Residential	1,000 µg/kg, or	4,000 μg/Kg
Nonresidential	10,000 μg/kg if capped	16,000 μg/Kg

TABLE 7
SUMMARY OF AREA G SOIL ANALYTICAL RESULTS
VOCS AND PNAS
108 ADAMS STREET SITE
108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN
PM PROJECT #01-14761-0-0002

	Volatile Organic Compounds (VOCs) and Polynuclear Aromatic Hydrocarbons (PNAs) (μg/Kg) Chemical Abstract Service Number (CAS#)										
Sample ID	Chemical Abstract Sample Date	Service Number (CAS#) Soil Type	Sample Depth (feet bgs)	Various VOCs	Various PNAs						
		Silty Sand/Clay Interface	4.0-5.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-1		Clay	14.0-15.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
	1	Silty Sand/Clay Interface	0.5-1.5	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-2		Sandy Clay/Clay Interface	9.0-10.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
0.0	1	Sandy Clay/Clay Interface	1.5-2.5	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-3	8/24/23	Sandy Clay/Clay Interface	9.5-10.5	<mdl< td=""><td rowspan="2"><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-4	0/24/23	Sandy Clay	1.5-2.5								
G-4		Sandy Clay/Clay Interface	10.0-11.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-5		Sandy Clay/Clay Interface	3.5-4.5	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-0		Clay Interface	10.0-11.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-6		Sandy Clay/Clay Interface	1.5-2.5	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						
G-0		Clay	14.0-15.0	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>						

Residential (µg/Kg)	Residential (µg/Kg)											
Drinking Water Protection (Res DWP)	Various	Various										
Groundwater Surface Water Interface Protection (GSIP)	Various	Various										
Soil Volatilization to Indoor Air Inhalation (Res SVII)	Various	Various										
Ambient Air Infinite Source Volatile Soil Inhalation (Res VSI)	Various	Various										
Ambient Air Finite VSI for 5 Meter Source Thickness	Various	Various										
Ambient Air Finite VSI for 2 Meter Source Thickness	Various	Various										
Ambient Air Particulate Soil Inhalation (Res PSI)	Various	Various										
Direct Contact (Res DC)	Various	Various										
Nonresidential (µg/Kg)												
Drinking Water Protection (Nonres DWP)	Various	Various										
Soil Volatilization to Indoor Air Inhalation (Nonres SVII)	Various	Various										
Ambient Air Infinite Source Volatile Soil Inhalation (Nonres VSI)	Various	Various										
Ambient Air Finite VSI for 5 Meter Source Thickness	Various	Various										
Ambient Air Finite VSI for 2 Meter Source Thickness	Various	Various										
Ambient Air Particulate Soil Inhalation (Nonres PSI)	Various	Various										
Direct Contact (Nonres DC)	Various	Various										
Screening Levels (µg/Kg)												
Soil Saturation Concentration Screening Levels (Csat)	Various	NL										
Residential Volatilization to Indoor Air Pathway Screening Level (VIAP)	Various	Various										
Nonresidential Volatilization to Indoor Air Pathway Screening Level (VIAP)	Various	Various										

	Criteria Exceeded
BOLD	Value Exceeds Criteria
	Value Exceeds Screening Level
underline	Screening Level Exceeded
μg/Kg	Micrograms per Kilogram
bgs	Below Ground Surface (feet)

Results compared to Sand Huron Erie Background Levels

Results compared to Clay Huron Erie Background Levels

<MDL Not detected at concentrations exceeding the laboratory method detection limit (MDL)

SUMMARY OF AREA H SOIL ANALYTICAL RESULTS VOCS, PMAS, PCBS, MI-10, AND DRO EVALUATION 108 ADAMS STREET SITE 108 ADAMS ST, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PROJECT 501-1471-0-0002

	000%	PNAs	PCBs	Arsenic	Barium	Cadmium	Chromium	Copper	Pead	Mercury	Selenium	Silver	Zinc	DRO¹				
	Various	Various	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666	NA				
Sample ID	VOCs	PNAs	PCBs					MI	-10					DRO				
		Silty Sand/Clay Interface	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3,100</td><td>28,000</td><td><200</td><td>11,000</td><td>8,100</td><td>3,000</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3,100</td><td>28,000</td><td><200</td><td>11,000</td><td>8,100</td><td>3,000</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<>	<mdl< td=""><td>3,100</td><td>28,000</td><td><200</td><td>11,000</td><td>8,100</td><td>3,000</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<>	3,100	28,000	<200	11,000	8,100	3,000	<50	300	<100	14,000	<27,000		
H-1		Clay Interface	1.5-2.5** 4.0-5.0**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3,000</td><td>36,000</td><td><200</td><td>13,000</td><td>9,500</td><td>3,500</td><td><60</td><td>300</td><td><100</td><td>83,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3,000</td><td>36,000</td><td><200</td><td>13,000</td><td>9,500</td><td>3,500</td><td><60</td><td>300</td><td><100</td><td>83,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>3,000</td><td>36,000</td><td><200</td><td>13,000</td><td>9,500</td><td>3,500</td><td><60</td><td>300</td><td><100</td><td>83,000</td><td><28,000</td></mdl<>	3,000	36,000	<200	13,000	9,500	3,500	<60	300	<100	83,000	<28,000	
H-2		Sand/Sandy Clay Interfae	1.5-2.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3,300</td><td>36,000</td><td><200</td><td>14,000</td><td>8,800</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3,300</td><td>36,000</td><td><200</td><td>14,000</td><td>8,800</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>3,300</td><td>36,000</td><td><200</td><td>14,000</td><td>8,800</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>19,000</td><td><28,000</td></mdl<>	3,300	36,000	<200	14,000	8,800	3,400	<60	200	<100	19,000	<28,000	
H-3		Sandy Clay/Clay Interface	3 5-4 5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2.900</td><td>34.000</td><td><200</td><td>13,000</td><td>8.900</td><td>3.200</td><td><60</td><td>300</td><td><100</td><td>19.000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2.900</td><td>34.000</td><td><200</td><td>13,000</td><td>8.900</td><td>3.200</td><td><60</td><td>300</td><td><100</td><td>19.000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2.900</td><td>34.000</td><td><200</td><td>13,000</td><td>8.900</td><td>3.200</td><td><60</td><td>300</td><td><100</td><td>19.000</td><td><28,000</td></mdl<>	2.900	34.000	<200	13,000	8.900	3.200	<60	300	<100	19.000	<28,000	
110		Silty Sand/Clay Interface		<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,900</td><td>25,000</td><td><200</td><td>12,000</td><td>9,000</td><td>3,300</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,900</td><td>25,000</td><td><200</td><td>12,000</td><td>9,000</td><td>3,300</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,900</td><td>25,000</td><td><200</td><td>12,000</td><td>9,000</td><td>3,300</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<>	2,900	25,000	<200	12,000	9,000	3,300	<60	200	<100	16,000	<28,000	
H-4	8/23/2023		1.0-2.0**															
	+	Clay Interface	4.5-5.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,000</td><td>29,000</td><td><200</td><td>11,000</td><td>7,900</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,000</td><td>29,000</td><td><200</td><td>11,000</td><td>7,900</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,000</td><td>29,000</td><td><200</td><td>11,000</td><td>7,900</td><td>2,600</td><td><60</td><td>200</td><td><100</td><td>13,000</td><td><28,000</td></mdl<>	2,000	29,000	<200	11,000	7,900	2,600	<60	200	<100	13,000	<28,000	
H-5		Silty Sand/Sandy Clay Interface	1.5-2.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3,100</td><td>63,000</td><td><200</td><td>20,000</td><td>8,500</td><td>5,500</td><td><60</td><td>400</td><td><100</td><td>23,000</td><td><30,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>3,100</td><td>63,000</td><td><200</td><td>20,000</td><td>8,500</td><td>5,500</td><td><60</td><td>400</td><td><100</td><td>23,000</td><td><30,000</td></mdl<></td></mdl<>	<mdl< td=""><td>3,100</td><td>63,000</td><td><200</td><td>20,000</td><td>8,500</td><td>5,500</td><td><60</td><td>400</td><td><100</td><td>23,000</td><td><30,000</td></mdl<>	3,100	63,000	<200	20,000	8,500	5,500	<60	400	<100	23,000	<30,000	
		Sandy Clay/Clay Interface	7.5-8.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,800</td><td>33,000</td><td><200</td><td>13,000</td><td>9,600</td><td>3,600</td><td><60</td><td><200</td><td><100</td><td>20,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,800</td><td>33,000</td><td><200</td><td>13,000</td><td>9,600</td><td>3,600</td><td><60</td><td><200</td><td><100</td><td>20,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,800</td><td>33,000</td><td><200</td><td>13,000</td><td>9,600</td><td>3,600</td><td><60</td><td><200</td><td><100</td><td>20,000</td><td><28,000</td></mdl<>	2,800	33,000	<200	13,000	9,600	3,600	<60	<200	<100	20,000	<28,000	
H-6		Silty Sand/Sandy Clay Interface	1.5-2.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4,200</td><td>41,000</td><td><200</td><td>14,000</td><td>9,400</td><td>3,200</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><29,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>4,200</td><td>41,000</td><td><200</td><td>14,000</td><td>9,400</td><td>3,200</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><29,000</td></mdl<></td></mdl<>	<mdl< td=""><td>4,200</td><td>41,000</td><td><200</td><td>14,000</td><td>9,400</td><td>3,200</td><td><60</td><td>300</td><td><100</td><td>15,000</td><td><29,000</td></mdl<>	4,200	41,000	<200	14,000	9,400	3,200	<60	300	<100	15,000	<29,000	
		Clay	7.5-8.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,200</td><td>27,000</td><td><200</td><td>13,000</td><td>7,100</td><td>3,100</td><td><60</td><td>200</td><td><100</td><td>46,000</td><td><30,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,200</td><td>27,000</td><td><200</td><td>13,000</td><td>7,100</td><td>3,100</td><td><60</td><td>200</td><td><100</td><td>46,000</td><td><30,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,200</td><td>27,000</td><td><200</td><td>13,000</td><td>7,100</td><td>3,100</td><td><60</td><td>200</td><td><100</td><td>46,000</td><td><30,000</td></mdl<>	2,200	27,000	<200	13,000	7,100	3,100	<60	200	<100	46,000	<30,000	
H-7		Asphalt/Sandy Clay/Silty Sand Interface	0.5-1.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,000</td><td>27,000</td><td><200</td><td>13,000</td><td>7,700</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>17,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,000</td><td>27,000</td><td><200</td><td>13,000</td><td>7,700</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>17,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,000</td><td>27,000</td><td><200</td><td>13,000</td><td>7,700</td><td>3,400</td><td><60</td><td>200</td><td><100</td><td>17,000</td><td><28,000</td></mdl<>	2,000	27,000	<200	13,000	7,700	3,400	<60	200	<100	17,000	<28,000	
H-7		Silty Sand/Sandy Clay Interface	4.0-5.0**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,600</td><td>24,000</td><td><200</td><td>11,000</td><td>6,300</td><td>2,900</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,600</td><td>24,000</td><td><200</td><td>11,000</td><td>6,300</td><td>2,900</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,600</td><td>24,000</td><td><200</td><td>11,000</td><td>6,300</td><td>2,900</td><td><60</td><td>200</td><td><100</td><td>16,000</td><td><28,000</td></mdl<>	1,600	24,000	<200	11,000	6,300	2,900	<60	200	<100	16,000	<28,000	
		9/24/2022	Sandy Clay	0.5-1.5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,700</td><td>25,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,800</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,700</td><td>25,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,800</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,700</td><td>25,000</td><td><200</td><td>11,000</td><td>6,900</td><td>2,800</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<>	1,700	25,000	<200	11,000	6,900	2,800	<50	300	<100	14,000	<27,000
H-8		Clay	4-5**	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>1,800</td><td>27,000</td><td><200</td><td>10,000</td><td>7,000</td><td>2,600</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>1,800</td><td>27,000</td><td><200</td><td>10,000</td><td>7,000</td><td>2,600</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<></td></mdl<>	<mdl< td=""><td>1,800</td><td>27,000</td><td><200</td><td>10,000</td><td>7,000</td><td>2,600</td><td><50</td><td>300</td><td><100</td><td>14,000</td><td><27,000</td></mdl<>	1,800	27,000	<200	10,000	7,000	2,600	<50	300	<100	14,000	<27,000	
		Silty Sand	0.5-1.5*	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>2,400</td><td>31,000</td><td><200</td><td>12,000</td><td>9,900</td><td>3,200</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>2,400</td><td>31,000</td><td><200</td><td>12,000</td><td>9,900</td><td>3,200</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<></td></mdl<>	<mdl< td=""><td>2,400</td><td>31,000</td><td><200</td><td>12,000</td><td>9,900</td><td>3,200</td><td><50</td><td>300</td><td><100</td><td>17,000</td><td><27,000</td></mdl<>	2,400	31,000	<200	12,000	9,900	3,200	<50	300	<100	17,000	<27,000	
H-9		Clay	4-5**	<mdi< td=""><td><mdi< td=""><td><mdl< td=""><td>1.700</td><td>27 000</td><td><200</td><td>9,700</td><td>6.400</td><td>2 400</td><td><50</td><td>300</td><td><100</td><td>13,000</td><td><27,000</td></mdl<></td></mdi<></td></mdi<>	<mdi< td=""><td><mdl< td=""><td>1.700</td><td>27 000</td><td><200</td><td>9,700</td><td>6.400</td><td>2 400</td><td><50</td><td>300</td><td><100</td><td>13,000</td><td><27,000</td></mdl<></td></mdi<>	<mdl< td=""><td>1.700</td><td>27 000</td><td><200</td><td>9,700</td><td>6.400</td><td>2 400</td><td><50</td><td>300</td><td><100</td><td>13,000</td><td><27,000</td></mdl<>	1.700	27 000	<200	9,700	6.400	2 400	<50	300	<100	13,000	<27,000	
		Oily	Cleanup Criteria Re			l		21,000	-200	5,760	0,400	2,400	-00	555	-100	10,000		
	Gen	eric Soil Cleanup Criteria Tables 2 and	3: Residential and Non-Residential EGLE Volatilization to Ind	Part 201 Gene	ric Cleanup Cri	teria and Scre	ening Levels/P		ased Screenin	g Levels, Dece	mber 21, 2020							
			LOLE VOIGINEGION IO INC		ential (µg/Kg)	Jilling Edvels, C	eptember 4, 2											
Statewide Default Background Levels				NA NA	NA	NA.	5.800	75.000	1.200	18.000	32.000	21,000	130	410	1.000	47.000		
	019 Soil Background and Use of the 20	05 Michigan Background Survey)		NA.	NA.	NA.	17,000	66,200	2,000	19,700	20,200	18,000	230	1,100	1,400	73,600	-	
	19 Soil Background and Use of the 200			NA NA	NA.	NA.	17,100	172,000	2,000	43,500	32,200	38,900	500	1,100	1,000	91,900		
Drinking Water Protection (DWP)	-			Various	Various	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4.000	4.500	2.40E+06		
Groundwater Surface Water Interface	Protection (GSIP)			Various	Various	NLL	4.600	9.3E+05 (G)	6.100 (G.X)	3.300	1.3E+05 (G)	5.9E+06 (G.X)	50 (M): 1.2	400	100 (MI: 27	3.0E+05 (G)		
Soil Volatilization to Indoor Air Inhala	ation (SVII)			Various	Various	3.0E+06	NI V	NLV	NIV	NLV	NLV	NLV	48.000	NI V	NLV	NIV		
Ambient Air Infinite Source Volatile S				Various	Various	2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52.000	NLV	NLV	NLV		
Ambient Air Finite VSI for 5 Meter So				Various	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV		
Ambient Air Finite VSI for 2 Meter So				Various	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV		
Ambient Air Particulate Soil Inhalatio				Various	Various	7.9E+06 5.2E+06	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	52,000 2.00E+07	1.30E+08	6.70E+06	ID		
Direct Contact (DC)	·· (· -·)			Various	Various	5.2E+06 (T)	7.600	3.70E+07	1.70E+06 5.50E+05	2.60E+05 2.50E+06	1.30E+08 2.00E+07	1.00E+08 4.00E+05	2.00E+07 1.60E+05	1.30E+08 2.60E+06	8.70E+06 2.50E+06	1.70E+08		
					dential (µg/Kg		7,000	3.70€70/	5.50E+05	2.502+06	2.005+07	4.000703	1.602703	2.000100	2.500.706	1.705408		
Drinking Water Protection (Nonres D	WP)			Various	Various	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06		
Soil Volatilization to Indoor Air Inhala	Soil Volatilization to Indoor Air Inhalation (Nonres SVII)							NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV		
Ambient Air Infinite Source Volatile S	ioil Inhalation (Nonres VSI)		Various	Various	8.10E+05	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV			
Ambient Air Finite VSI for 5 Meter So	urce Thickness			Various	Various	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV		
Ambient Air Finite VSI for 2 Meter So				Various	Various	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV		
Ambient Air Particulate Soil Inhalatio				Various	Various	6.5E+06	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	8.80E+06	5.90E+07	2.90E+06	ID		
Direct Contact (Nonres DC)				Various	Various	(T)	37,000	1.30E+08	2.10E+06	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.00E+06	6.30E+08		
					g Levels (µg/K													
Soil Saturation Concentration Screen	ing Levels (Csat)			Various	Various	NA.	NA.	NA.	NA.	NA.	NA.	N.	NA.	NA.	NA.	NA.		
	sidential Volatilization to Indoor Air Pathway Screening Level (VIAP)						NA NA	NA.	NA.	NA.	NA.	NA NA	22 (M)	NA NA	NA.	NA.		
	r Air Pathway Screening Level (VIAP)			Various Various	Various Various	ID ID	NA NA	NA.	NA.	NA.	NA.	NA.	390	NA NA	NA.	NA.		
	,			VIIII	VIIII NOVA		1905	1905	100	1995	1905	190	300	1905	1905	1905		

BOLI	0

Criteria Exceeded Value Exceeds Criteria

Value Exceeds Screening Level

underline Screening Level Exceeded

µg/Kg Micrograms per Kilogram

µg/Kg Micrograms per Krigram
bys Below Ground Surface (feet)
* Results compared to Sand Humn Eire Background Levels
* Results compared to Clay Humn Eire Background Levels
- MDL
* Not detected at concentrations exceeding the liboratory method detection limit (MDL)

NA Not Applicable / Not Analyzed
NL Not Listed

NLV Not Likely to Volatilize
ID Insufficient Data

(GX) Metal GSP Orteris for Surface Water Mod Protected for Drisbing Water Use based on 301 mg/L CACO³ Handness: Station ID 80002. Sughnaw River at Latiyyetis Street Bridge, Bay Chy, M () Other Alpha notation, please refer to EGLE Education of the Vagor Harton Protein Station, December 21, 2020 () Other Alpha notation, please refer to EGLE Education of the Vagor Harton Protein Station, September 21, 2020

(T) Refer to the Toxic Substance Control Act (TSCA), 40 CFR 761, Subparts D and G, as amended, to determine the applicability of TSCA cleanup standards. Alternatives to compliance with the standards lated below are possible under Subpart D. New releases may be subject to the standards identified in Subpart G.

Use Part 201 soil direct contact criteria in the table below where TSCA standards are not applicable.

LAND USE CATEGORY	TSCA Subpart D	Part 201
Residential	1,000 µg/kg, or	4,000 μg/Kg
Nonresidential	10,000 μg/kg if capped	16.000 µg/Kg

TABLE 9 SUMMARY OF SOIL ANALYTICAL RESULTS BULK SAMPLE CONTENT AND ASBESTOS EVALUATION 108 ADAMS SITE 108 ADAMS STREET, 101-109 NORTH JEFFERSON AVE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT #01-14761-0-0002

Bulk	Sample Content and Asbestos Evalu	ıation	Fibrous Cellulose	Other Non-Fibrous	Quartz	Asbestos	Asbestos Present?				
Sample ID	Sample Date	Sample Depth (feet bgs)		Bulk Sample Content							
		4.5-5.5	<1%	93%	7%	0%	Evaluation No				
E-1		7.0-8.0	<1%	94%	6%	0%	No				
F.0]	4.5-5.5	<1%	93%	7%	0%	No				
E-2		9.5-10.5	<1%	94%	6%	0%	No				
F.4		4.5-5.5	<1%	95%	5%	0%	No				
E-4		8.5-9.5	<1%	94%	6%	0%	No				
E-5		4.5-5.5	<1%	95%	5%	0%	No				
E-3		6.0-7.0	<1%	95%	5%	0%	No				
E-6		1.0-2.0	<1%	94%	6%	0%	No				
E-0	8/21/23	4.5-5.5	<1%	95%	5%	0%	No				
E-7]	4.5-5.5	<1%	95%	5%	0%	No				
E-8		4.5-5.5	<1%	94%	6%	0%	No				
E-0		7.0-8.0	<1%	95%	5%	0%	No				
F-1		3.5-4.5	<1%	95%	5%	0%	No				
171		14.0-15.0	<1%	94%	6%	0%	No				
F-2		3.5-4.5	<1%	94%	6%	0%	No				
1-2		10.5-11.5	<1%	93%	7%	0%	No				
F-3		0.5-1.5	<1%	94%	6%	0%	No				
175		4.5-5.5	<1%	95%	5%	0%	No				
H-1		1.5-2.5	<1%	94%	6%	0%	No				
11-1		4.0-5.0	<1%	94%	6%	0%	No				
H-2		1.5-2.5	<1%	94%	6%	0%	No				
H-3		4.5-5.5	<1%	95%	5%	0%	No				
H-4	8/23/23	1.0-2.0	<1%	95%	5%	0%	No				
	5/20/20	4.5-5.5	<1%	95%	5%	0%	No				
H-5		1.5-2.5	<1%	94%	6%	0%	No				
0		7.5-8.5	<1%	94%	6%	0%	No				
H-6		1.5-2.5	<1%	94%	6%	0%	No				
· ·		4.5-5.5	<1%	93%	7%	0%	No				
H-8		0.5-1.5	<1%	95%	5%	0%	No				
· -	8/24/23	4.5-5.5	<1%	94%	6%	0%	No				
H-9			<1%	94%	6%	0%	No				
· · ·		4.5-5.5	<1%	95%	5%	0%	No				

bgs Below Ground Surface (feet)

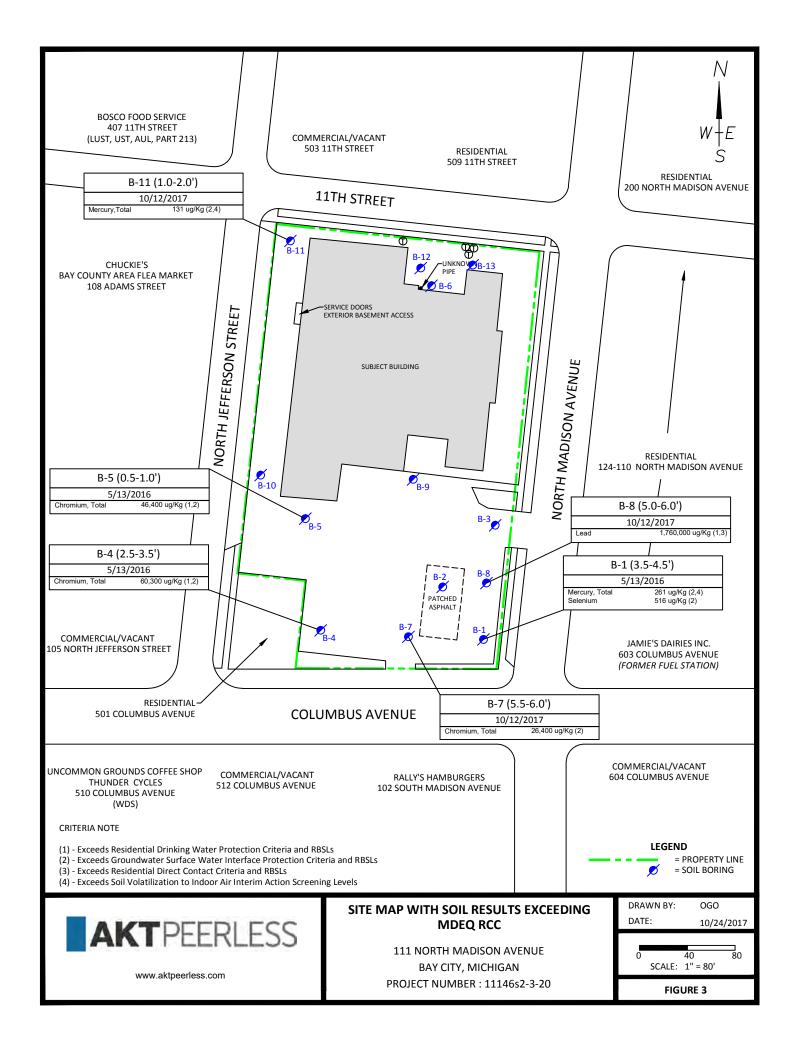
TABLE 10 SUMMARY OF SOIL GAS ANALYTICAL RESULTS VOCS 108 ADAMS STREET SITE 108 ADAMS ST, 101-109 NORTH JEFFERSON AUE, AND 501 COLUMBUS AVE, BAY CITY, MICHIGAN PM PROJECT #01-14761-0-0002

Volatile	o Organic Compounds (μg/m³)	s (VOCs)	1,3-Butadiene	Benzene	Bromofluorobenzene	Carbon disulfide	Chlorobenzene	Cyclohexane	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Ethanol	Ethylberzene	Heptane	Hexane	Isopropyl Benzene	Methylcyclopentane	Methyl Isobutyl Ketone	Pentane	n-Propylberzene	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	2,2,4-Trimethylpentane	Tetrachloroethylene	Toluene	Xylenes (total)	Other VOCs
Chemical	Abstract Service Num	iber (CAS#)	106990	71432	460004	75150	108907	110827	95501	106467	64175	100414	142825	110543	98828	96377	108101	109660	103651	526738	95636	108678	540841	127184	108883	1330207	Various
Sample ID	Sample Date	Sample Depth (feet bgs)																									
TSG-1	8/24/2023	4.5	22	35	137	15	51	14	14	16	1,100	16	20	64	<7.2	48	31	120	18	<7.2	27	8.1	29	66	57	78	<mdl< td=""></mdl<>
TSG-2	0/24/2023	4.0	<3.3	76	136	21	52	51	15	19	510	57	84	210	7.4	130	64	390	33	17	82	25	100	<10	260	278	<mdl< th=""></mdl<>
	EGLE Volatilization to Indoor Air Pathway (VIAP) Screening Levels, September 4, 2020																										
										EGLE	Residential/I	Nonresidentia	I VIAP Scree	ning Levels (µg/m³)												
Residential VIAP			NL	110	NL	24,000	1,700	2.10E+05	10,000	220	6.3E+05 (EE)	340	1.20E+05	24,000	81	24,000	27,000	NL	33,000 (DD)	2,100 (JT)	2,100 (JT)	2,100 (JT)	1.20E+05	1,400 (EE)	1.70E+05	7,600 (J)	Various
Nonresidential VIAP	1		NL	260	NL	36,000	2,600	3.10E+05	15,000	510	6.3E+05 (EE)	800	1.80E+05	36,000	190	36,000	27,000	NL	33,000 (DD)	3,100 (JT)	3,100 (JT)	3,100 (JT)	1.80E+05	1,400 (EE)	2.50E+05 (EE)	11,000 (J)	Various

Value Exceeds Screening Level underline Screening Level Exceeded

μg/m³ Micrograms per cubic meter

bgs Below Ground Surface


<MDL Not detected at levels above the laboratory Method Detection Limit (MDL)

NL Not Listed

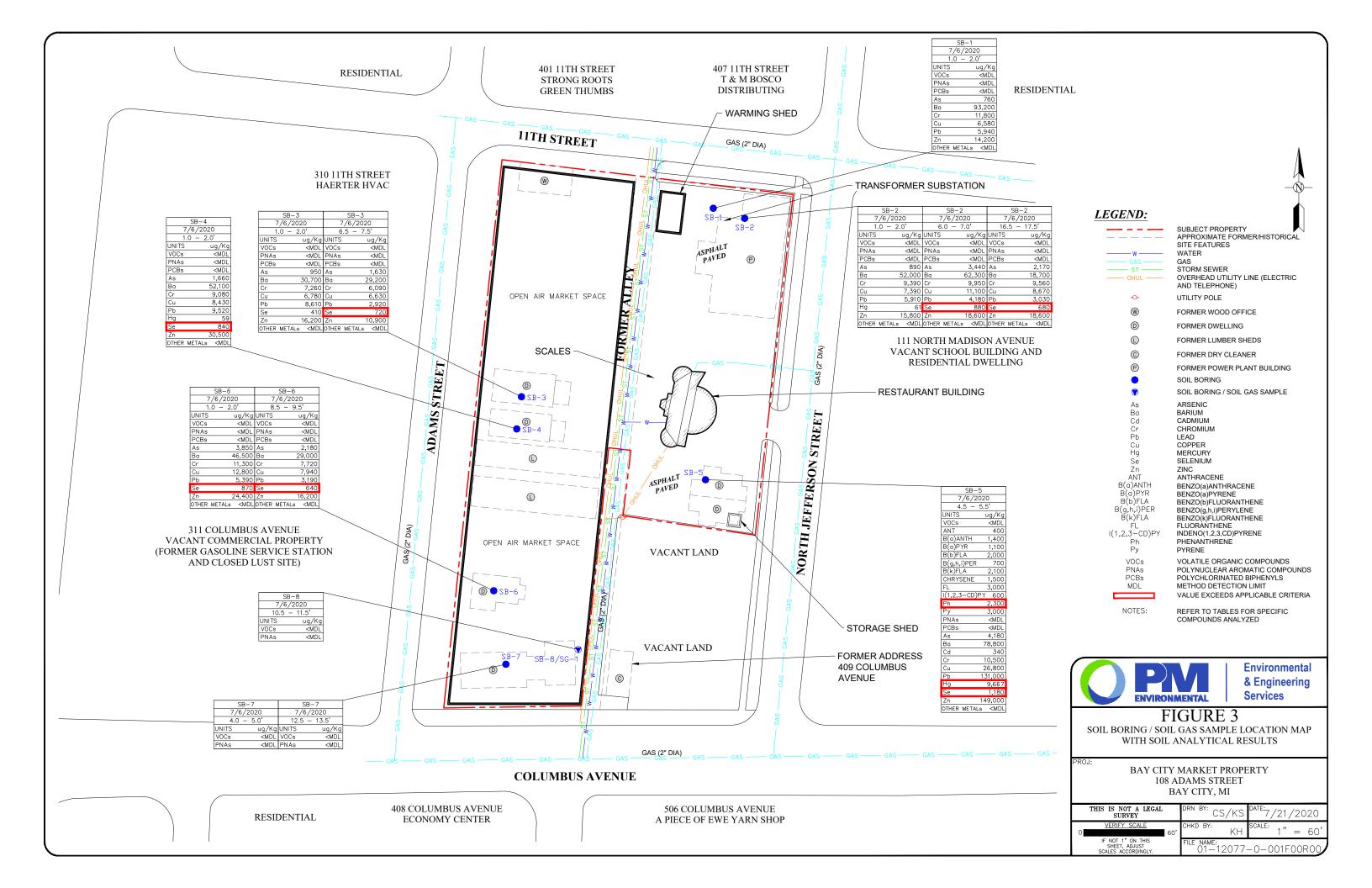
() Other Alpha notation, please refer to EGLE Guidance for the Vapor Intrusion Pathway Appendix D.1 Footnotes, September 4, 2020

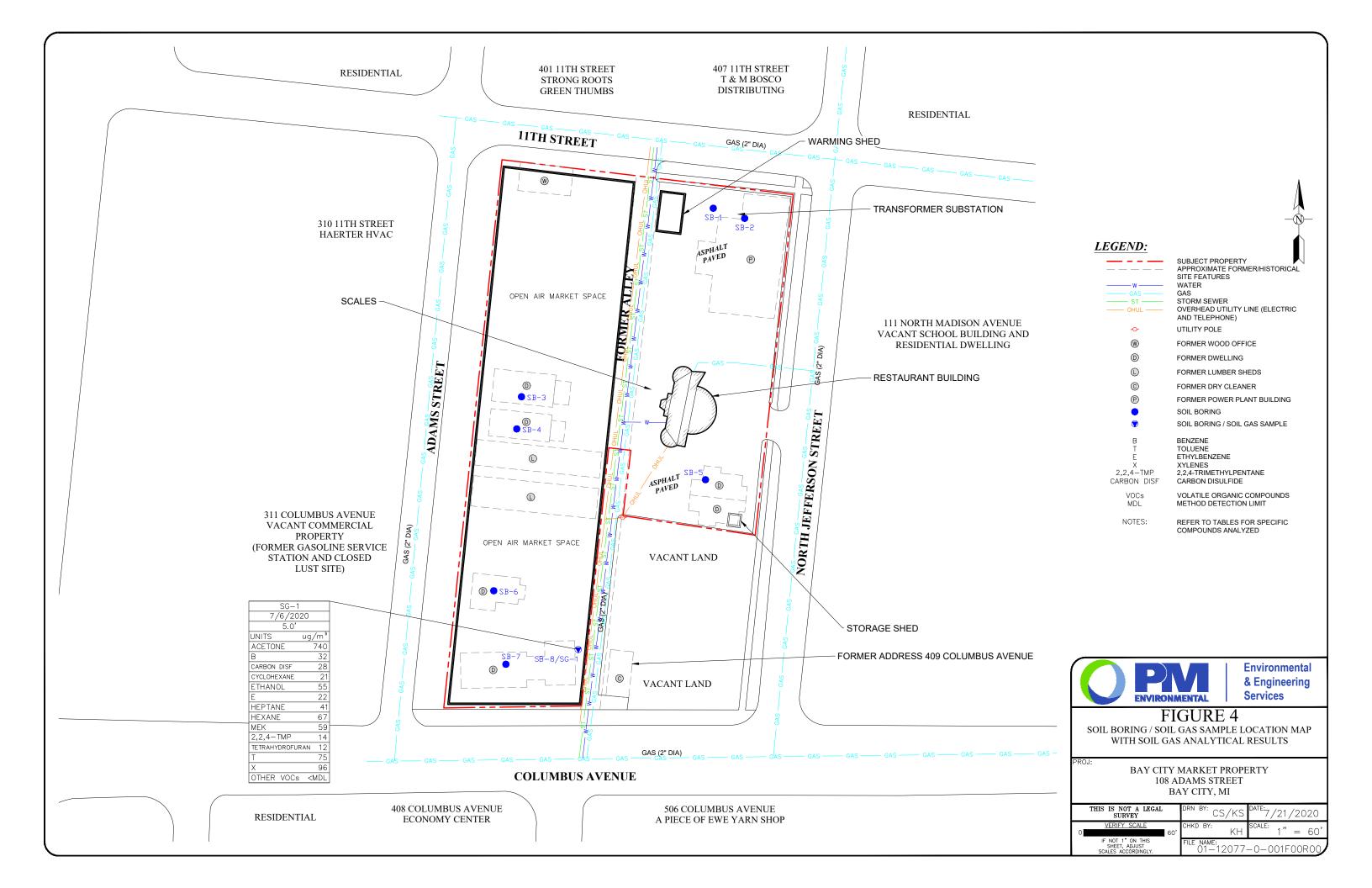
Appendix A

Parameters*				Groundwater	Residential Soil	Residential				Sample ID	B-1	B-2	B-3	B-4	B-5	B-6
	Chemical Abstract Service	Statewide Default Background	Residential Drinking Water Protection	Surface Water Interface	Volatilization to Indoor Air	Infinite Source Volatile Soil Inhalation	Residential Particulate Soil Inhalation	Residential Direct Contact	Maximum Concentration	Collection Date	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016
*(Refer to detailed laboratory report for method reference data)	Number	Levels	Criteria & RBSLs	Protection Criteria & RBSLs	Inhalation Criteria & RBSLs	Criteria (VSIC) & RBSLs	Criteria & RBSLs	Criteria & RBSLs	Detected	Depth	3.5-4.5'	0.5-1.5'	2.0-3.0'	2.5-3.5'	0.5-1.0'	7.0-8.0'
Metals, ug/Kg																
Arsenic (B)	7440-38-2	5,800	4,600	4,600	NLV	NLV	7.20E+05	7,600	5,700		4,400	NS	NS	2,570	1,640	NS
Barium (B)	7440-39-3	75,000	1.30E+06	(G)	NLV	NLV	3.30E+08	3.70E+07	469,000		93,100	NS	NS	148,000	92,200	NS
Cadmium (B)	7440-43-9	1,200	6,000	(G,X)	NLV	NLV	1.70E+06	5.50E+05	2,270		<200	NS	NS	<200	<200	NS
Chromium, Total	7440-47-3	18,000 (total)	30,000	3,300	NLV	NLV	2.60E+05	2.50E+06	60,300		8,330	NS	NS	60,300	46,400	NS
Copper (B)	7440-50-8	32,000	5.80E+06	(G)	NLV	NLV	1.30E+08	2.00E+07	23,000		6,220	NS	NS	10,300	23,000	NS
Lead (B)	7439-92-1	21,000	7.00E+05	(G,X)	NLV	NLV	1.00E+08	4.00E+05	1,760,000		2,890	NS	NS	8,130	72,100	NS
Mercury, Total (B, Z)	Varies	130	1,700	50 (M); 1.2	48,000	52,000	2.00E+07	1.60E+05	261		261	NS	NS	<50	<50	NS
Selenium (B)	7782-49-2	410	4,000	400	NLV	NLV	1.30E+08	2.60E+06	516		516	NS	NS	<200	<200	NS
Silver (B)	7440-22-4	1,000	4,500	100 (M); 27	NLV	NLV	6.70E+06	2.50E+06	<100		<100	NS	NS	<100	<100	NS
Zinc (B)	7440-66-6	47,000	2.40E+06	(G)	NLV	NLV	ID	1.70E+08	1,510,000		15,600	NS	NS	15,600	47,200	NS
Semivolatiles, PNAs, ug/Kg																
Acenaphthene	83-32-9	NA	3.00E+05	8,700	1.90E+08	8.10E+07	1.40E+10	4.10E+07	<330		<330	NS	<330	<330	<330	NS
Acenaphthylene	208-96-8	NA	5,900	ID	1.60E+06	2.20E+06	2.30E+09	1.60E+06	<330		<330	NS	<330	<330	<330	NS
Anthracene	120-12-7	NA	41,000	ID	1.0E+9 (D)	1.40E+09	6.70E+10	2.30E+08	<330		<330	NS	<330	<330	<330	NS
Benzo(a)anthracene (Q)	56-55-3	NA	NLL	NLL	NLV	NLV	ID	20,000	467		<330	NS	<330	<330	<330	NS
Benzo(b)fluoranthene (Q)	205-99-2	NA	NLL	NLL	ID	ID	ID	20,000	344		<330	NS	<330	<330	<330	NS
Benzo(k)fluoranthene (Q)	207-08-9	NA	NLL	NLL	NLV	NLV	ID	2.00E+05	326		<330	NS	<330	<330	<330	NS
Benzo(g,h,i)perylene	191-24-2	NA	NLL	NLL	NLV	NLV	8.00E+08	2.50E+06	848		<330	NS	<330	<330	<330	NS
Benzo(a)pyrene (Q)	50-32-8	NA	NLL	NLL	NLV	NLV	1.50E+06	2,000	509		<330	NS	<330	<330	<330	NS
Chrysene (Q)	218-01-9	NA	NLL	NLL	ID	ID	ID	2.00E+06	523		<330	NS	<330	<330	<330	NS
Dibenzo(a,h)anthracene (Q)	53-70-3	NA	NLL	NLL	NLV	NLV	ID	2,000	386		<330	NS	<330	<330	<330	NS
Fluoranthene	206-44-0	NA	7.30E+05	5,500	1.0E+9 (D)	7.40E+08	9.30E+09	4.60E+07	691		<330	NS	<330	<330	<330	NS
Fluorene	86-73-7	NA	3.90E+05	5,300	5.80E+08	1.30E+08	9.30E+09	2.70E+07	<330		<330	NS	<330	<330	<330	NS
Indeno(1,2,3-cd)pyrene (Q)	193-39-5	NA	NLL	NLL	NLV	NLV	ID	20,000	479		<330	NS	<330	<330	<330	NS
2-Methylnaphthalene	91-57-6	NA	57,000	4,200	2.70E+06	1.50E+06	6.70E+08	8.10E+06	<330		<330	NS	<330	<330	<330	NS
Naphthalene	91-20-3	NA	35,000	730	2.50E+05	3.00E+05	2.00E+08	1.60E+07	<330		<330	NS	<330	<330	<330	NS
Phenanthrene	85-01-8	NA	56,000	2,100	2.80E+06	1.60E+05	6.70E+06	1.60E+06	351		<330	NS	<330	<330	<330	NS
Pyrene	129-00-0	NA	4.80E+05	ID	1.0E+9 (D)	6.50E+08	6.70E+09	2.90E+07	554		<330	NS	<330	<330	<330	NS
Volatiles, VOCs, ug/Kg																
Acetone (I)	67-64-1	NA	15,000	34,000	2.9E+8 (C)	1.30E+08	3.90E+11	2.30E+07	<1000		<1000	<1000	<1000	<1000	<1000	<1000
Benzene (I)	71-43-2	NA	100	4,000 (X)	1,600	13,000	3.80E+08	1.80E+05	<50		<50	<50	<50	<50	<50	<50
Bromobenzene (I)	108-86-1	NA	550	NA	3.10E+05	4.50E+05	5.30E+08	5.40E+05	<100		<100	<100	<100	<100	<100	<100
Bromochloromethane	74-97-5	NA	NC	NC	NC	NC	NC	NC	<100		<100	<100	<100	<100	<100	<100
Bromodichloromethane	75-27-4	NA	1,600 (W)	ID	1,200	9,100	8.40E+07	1.10E+05	<100		<100	<100	<100	<100	<100	<100
Bromoform	75-25-2	NA	1,600 (W)	ID	1.50E+05	9.00E+05	2.80E+09	8.20E+05	<100		<100	<100	<100	<100	<100	<100
Bromomethane	74-83-9	NA	200	700	860	11,000	3.30E+08	3.20E+05	<200		<200	<200	<200	<200	<200	<200
2-Butanone (MEK) (I)	78-93-3	NA	2.60E+05	44,000	5.4E+7 (C)	2.90E+07	6.70E+10	1.2E+8 (C, DD)	<750		<750	<750	<750	<750	<750	<750

Parameters*				Crowndwater	Residential Soil	Residential				Sample ID	B-1	B-2	B-3	B-4	B-5	B-6
	Chemical Abstract Service	Statewide Default Background	Residential Drinking Water Protection	Groundwater Surface Water Interface	Volatilization to Indoor Air	Infinite Source Volatile Soil Inhalation	Residential Particulate Soil Inhalation	Residential Direct Contact	Maximum Concentration	Collection Date	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016
*(Refer to detailed laboratory report for method reference data)	Number	Levels	Criteria & RBSLs	Protection Criteria & RBSLs	Inhalation Criteria & RBSLs	Criteria (VSIC) & RBSLs	Criteria & RBSLs	Criteria & RBSLs	Detected	Depth	3.5-4.5'	0.5-1.5'	2.0-3.0'	2.5-3.5'	0.5-1.0'	7.0-8.0'
n-Butylbenzene	104-51-8	NA	1,600	ID	ID	ID	2.00E+09	2.50E+06	<50		<50	<50	<50	<50	<50	<50
sec-Butylbenzene	135-98-8	NA	1,600	ID	ID	ID	4.00E+08	2.50E+06	<50		<50	<50	<50	<50	<50	<50
tert-Butylbenzene (I)	98-06-6	NA	1,600	ID	ID	ID	6.70E+08	2.50E+06	<50		<50	<50	<50	<50	<50	<50
Carbon disulfide (I,R)	75-15-0	NA	16,000	ID	76,000	1.30E+06	4.70E+10	7.2E+6 (C, DD)	<250		<250	<250	<250	<250	<250	<250
Carbon tetrachloride	56-23-5	NA	100	900 (X)	190	3,500	1.30E+08	96,000	<50		<50	<50	<50	<50	<50	<50
Chlorobenzene (I)	108-90-7	NA	2,000	500	1.20E+05	7.70E+05	4.70E+09	4.3E+6 (C)	<50		<50	<50	<50	<50	<50	<50
Chloroethane	75-00-3	NA	8,600	22,000 (X)	2.9E+6 (C)	3.00E+07	6.70E+11	2.6E+6 (C)	<250		<250	<250	<250	<250	<250	<250
Chloroform	67-66-3	NA	1,600 (W)	7,000	7,200	45,000	1.30E+09	1.20E+06	<50		<50	<50	<50	<50	<50	<50
Chloromethane (I)	74-87-3	NA	5,200	ID	2,300	40,000	4.90E+09	1.6E+6 (C)	<250		<250	<250	<250	<250	<250	<250
2-Chlorotoluene (I)	95-49-8	NA	3,300	ID	2.70E+05	1.20E+06	4.70E+09	4.5E+6 (C)	<50		<50	<50	<50	<50	<50	<50
4-Chlorotoluene (I)	106-43-4	NA	NC	NC	NC	NC	NC	NC	<50		<50	<50	<50	<50	<50	<50
Dibromochloromethane	124-48-1	NA	1,600 (W)	ID	3,900	24,000	1.30E+08	1.10E+05	<100		<100	<100	<100	<100	<100	<100
1,2-Dibromo-3-Chloropropane	96-12-8	NA	10 (M); 4.0	ID	220	260	5.6E+5	4,400 (C)	<10		<10	<10	<10	<10	<10	<10
Dibromomethane	74-95-3	NA	1,600	NA	ID	ID	ID	2.5E+6 (C)	<250		<250	<250	<250	<250	<250	<250
1,2-Dichlorobenzene	95-50-1	NA	14,000	280	1.1E+7 (C)	3.90E+07	1.00E+11	1.9E+7 (C)	<100		<100	<100	<100	<100	<100	<100
1,3-Dichlorobenzene	541-73-1	NA	170	680	26,000	79,000	2.00E+08	2.0E+5 (C)	<100		<100	<100	<100	<100	<100	<100
1,4-Dichlorobenzene	106-46-7	NA	1,700	360	19,000	77,000	4.50E+08	4.00E+05	<100		<100	<100	<100	<100	<100	<100
Dichlorodifluoromethane	75-71-8	NA	95,000	ID	9.00E+05	5.30E+07	3.30E+12	5.2E+7 (C)	<250		<250	<250	<250	<250	<250	<250
1,1-Dichloroethane	75-34-3	NA	18,000	15,000	2.30E+05	2.10E+06	3.30E+10	2.7E+7 (C)	<50		<50	<50	<50	<50	<50	<50
1,2-Dichloroethane (I)	107-06-2	NA	100	7,200 (X)	2,100	6,200	1.20E+08	91,000	<50		<50	<50	<50	<50	<50	<50
1,1-Dichloroethylene (I)	75-35-4	NA	140	2,600	62	1,100	6.20E+07	2.00E+05	<50		<50	<50	<50	<50	<50	<50
cis-1,2-Dichloroethylene	156-59-2	NA	1,400	12,000	22,000	1.80E+05	2.30E+09	2.5E+6 (C)	<50		<50	<50	<50	<50	<50	<50
trans-1,2-Dichloroethylene	156-60-5	NA	2,000	30,000 (X)	23,000	2.80E+05	4.70E+09	3.8E+6 (C)	<50		<50	<50	<50	<50	<50	<50
1,2-Dichloropropane (I)	78-87-5	NA	100	4,600 (X)	4,000	25,000	2.70E+08	1.40E+05	<50		<50	<50	<50	<50	<50	<50
1,3-Dichloropropane	142-28-9	NA	NC	NC	NC	NC	NC	NC	<50		<50	<50	<50	<50	<50	<50
2,2-Dichloropropane	594-20-7	NA	NC	NC	NC	NC	NC	NC	<50		<50	<50	<50	<50	<50	<50
1,3-Dichloropropene	542-75-6	NA	170	180 (X)	1,000	18,000	7.80E+08	10,000	<50		<50	<50	<50	<50	<50	<50
1,1-Dichloropropene	563-58-6	NA	NC	NC	NC	NC	NC	NC	<50		<50	<50	<50	<50	<50	<50
Ethylbenzene (I)	100-41-4	NA	1,500	360	87,000	7.20E+05	1.00E+10	2.2E+7 (C)	<50		<50	<50	<50	<50	<50	<50
Ethylene dibromide (1,2-Dibromoethane)	106-93-4	NA	20 (M); 1.0	110 (X)	670	1,700	1.40E+07	92	<20		<20	<20	<20	<20	<20	<20
Hexachlorobutadiene	87-68-3	NA	26,000	91	1.30E+05	1.30E+05	1.40E+08	1.00E+05	<50		<50	<50	<50	<50	<50	<50
2-Hexanone	591-78-6	NA	20,000	ID	9.90E+05	1.10E+06	2.70E+09	3.2E+7 (C)	<2500		<2500	<2500	<2500	<2500	<2500	<2500
Isopropyl benzene	98-82-8	NA	91,000	3,200	4.0E+5 (C)	1.70E+06	5.80E+09	2.5E+7 (C)	<250		<250	<250	<250	<250	<250	<250
4-Methyl-2-pentanone (MIBK) (I)	108-10-1	NA	36,000	ID	3.7E+7 (C)	4.50E+07	1.40E+11	5.6E+7 (C)	<2500		<2500	<2500	<2500	<2500	<2500	<2500
Methyl-tert-butyl ether (MTBE)	1634-04-4	NA	800	1.4E+5 (X)	9.9E+6 (C)	2.50E+07	2.00E+11	1.50E+06	<250		<250	<250	<250	<250	<250	<250
Methylene chloride	75-09-2	NA	100	30,000 (X)	45,000	2.10E+05	6.60E+09	1.30E+06	<250		<250	<250	<250	<250	<250	<250
2-Methylnaphthalene	91-57-6	NA	57,000	4,200	2.70E+06	1.50E+06	6.70E+08	8.10E+06	<250		<250	<250	<250	<250	<250	<250
Naphthalene	91-20-3	NA	35,000	730	2.50E+05	3.00E+05	2.00E+08	1.60E+07	<250		<250	<250	<250	<250	<250	<250

Parameters* *(Refer to detailed laboratory report for method reference data)						Residential				Sample ID	B-1	B-2	B-3	B-4	B-5	B-6
	Chemical Abstract	Statewide Default	Residential Drinking Water Protection Criteria & RBSLs	Groundwater Surface Water Interface Protection Criteria & RBSLs	Residential Soil Volatilization to Indoor Air Inhalation Criteria & RBSLs	Infinite Source Volatile Soil	Residential Particulate Soil	Residential Direct Contact	Maximum Concentration Detected	Collection Date	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016	5/13/2016
	Service Number	Background Levels				Inhalation Criteria (VSIC) & RBSLs	Inhalation Criteria & RBSLs	Criteria & RBSLs		Depth	3.5-4.5'	0.5-1.5'	2.0-3.0'	2.5-3.5'	0.5-1.0'	7.0-8.0'
n-Propylbenzene (I)	103-65-1	NA	1,600	ID	ID	ID	1.30E+09	2.50E+06	<100		<100	<100	<100	<100	<100	<100
Styrene	100-42-5	NA	2,700	2,100 (X)	2.50E+05	9.70E+05	5.50E+09	4.00E+05	<50		<50	<50	<50	<50	<50	<50
1,1,1,2-Tetrachloroethane	630-20-6	NA	1,500	ID	6,200	36,000	4.20E+08	4.8E+5 (C)	<100		<100	<100	<100	<100	<100	<100
1,1,2,2-Tetrachloroethane	79-34-5	NA	170	1,600 (X)	4,300	10,000	5.40E+07	53,000	<50		<50	<50	<50	<50	<50	<50
Tetrachloroethylene	127-18-4	NA	100	1,200 (X)	11,000	1.7E+5	2.7E+9	2.0E+5 (C)	<50		<50	<50	<50	<50	<50	<50
Tetrahydrofuran	109-99-9	NA	1,900	2.2E+5 (X)	1.30E+06	1.3E+7	3.9E+11	2.90E+06	<1000		<1000	<1000	<1000	<1000	<1000	<1000
Toluene (I)	108-88-3	NA	16,000	5,400	3.3E+5 (C)	2.80E+06	2.70E+10	5.0E+7 (C)	<100		<100	<100	<100	<100	<100	<100
1,2,3-Trichlorobenzene	87-61-6	NA	NC	NC	NC	NC	NC	NC	<250		<250	<250	<250	<250	<250	<250
1,2,4-Trichlorobenzene	120-82-1	NA	4,200	5,900 (X)	9.6E+6 (C)	2.80E+07	2.50E+10	9.9E+5 (DD)	<250		<250	<250	<250	<250	<250	<250
1,1,1-Trichloroethane	71-55-6	NA	4,000	1,800	2.50E+05	3.80E+06	6.70E+10	5.0E+8 (C)	<50		<50	<50	<50	<50	<50	<50
1,1,2-Trichloroethane	79-00-5	NA	100	6,600 (X)	4,600	17,000	1.90E+08	1.80E+05	<50		<50	<50	<50	<50	<50	<50
Trichloroethylene	79-01-6	NA	100	4,000 (X)	1,000	11,000	1.3E+8	1.1E+5 (DD)	<50		<50	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	NA	52,000	NA	2.8E+6 (C)	9.20E+07	3.80E+12	7.9E+7 (C)	<100		<100	<100	<100	<100	<100	<100
1,2,3-Trichloropropane	96-18-4	NA	840	NA	4,000	9,200	2.00E+07	1.3E+6 (C)	<100		<100	<100	<100	<100	<100	<100
1,2,4-Trimethylbenzene (I)	95-63-6	NA	2,100	570	4.3E+6 (C)	2.10E+07	8.20E+10	3.2E+7 (C)	<100		<100	<100	<100	<100	<100	<100
1,3,5-Trimethylbenzene (I)	108-67-8	NA	1,800	1,100	2.6E+6 (C)	1.60E+07	8.20E+10	3.2E+7 (C)	<100		<100	<100	<100	<100	<100	<100
Vinyl acetate (I)	108-05-4	NA	13,000	NA	7.90E+05	1.70E+06	1.30E+10	5.8E+6 (C,DD)	<5000		<5000	<5000	<5000	<5000	<5000	<5000
Vinyl chloride	75-01-4	NA	40	260 (X)	270	4,200	3.50E+08	3,800	<40		<40	<40	<40	<40	<40	<40
Xylenes (I)	1330-20-7	NA	5,600	820	6.3E+6 (C)	4.60E+07	2.90E+11	4.1E+8 (C)	<150		<150	<150	<150	<150	<150	<150


Parameters*				Groundwater	Residential Soil	Residential				Sample ID	B-7	B-8	B-9	B-10	B-11	B-12	B-13
	Chemical Abstract Service	Statewide Default Background	Residential Drinking Water Protection	Surface Water Interface	Volatilization to Indoor Air	Infinite Source Volatile Soil Inhalation	Residential Particulate Soil Inhalation	Residential Direct Contact	Maximum Concentration	Collection Date	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017
*(Refer to detailed laboratory report for method reference data)	Number	Levels	Criteria & RBSLs	Protection Criteria & RBSLs	Inhalation Criteria & RBSLs	Criteria (VSIC) & RBSLs	Criteria & RBSLs	Criteria & RBSLs	Detected	Depth	5.5-6.0'	5.0-6.0'	1.5-2.0'	0.5-1.5'	1.0-2.0'	2.0-3.0'	2.0-3.0'
Metals, ug/Kg																	
Arsenic (B)	7440-38-2	5,800	4,600	4,600	NLV	NLV	7.20E+05	7,600	5,700		5,700	4,240	112	412	2,530	880	924
Barium (B)	7440-39-3	75,000	1.30E+06	(G)	NLV	NLV	3.30E+08	3.70E+07	469,000		162,000	469,000	67,100	74,600	87,800	66,400	79,300
Cadmium (B)	7440-43-9	1,200	6,000	(G,X)	NLV	NLV	1.70E+06	5.50E+05	2,270		< 200	2,270	< 200	< 200	223	< 200	< 200
Chromium, Total	7440-47-3	18,000 (total)	30,000	3,300	NLV	NLV	2.60E+05	2.50E+06	60,300		26,400	8,000	9,010	6,410	6,140	8,740	9,130
Copper (B)	7440-50-8	32,000	5.80E+06	(G)	NLV	NLV	1.30E+08	2.00E+07	23,000		13,000	10,600	5,360	5,840	16,300	6,970	9,680
Lead (B)	7439-92-1	21,000	7.00E+05	(G,X)	NLV	NLV	1.00E+08	4.00E+05	1,760,000		69,600	1,760,000	3,820	17,100	59,400	27,900	30,000
Mercury, Total (B, Z)	Varies	130	1,700	50 (M); 1.2	48,000	52,000	2.00E+07	1.60E+05	261		< 50	< 50	64	50	131	78	80
Selenium (B)	7782-49-2	410	4,000	400	NLV	NLV	1.30E+08	2.60E+06	516		< 200	< 200	< 200	< 200	< 200	< 200	< 200
Silver (B)	7440-22-4	1,000	4,500	100 (M); 27	NLV	NLV	6.70E+06	2.50E+06	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Zinc (B)	7440-66-6	47,000	2.40E+06	(G)	NLV	NLV	ID	1.70E+08	1,510,000		39,400	1,510,000	10,600	56,600	45,800	29,200	36,000
Semivolatiles, PNAs, ug/Kg																	
Acenaphthene	83-32-9	NA	3.00E+05	8,700	1.90E+08	8.10E+07	1.40E+10	4.10E+07	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Acenaphthylene	208-96-8	NA	5,900	ID	1.60E+06	2.20E+06	2.30E+09	1.60E+06	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Anthracene	120-12-7	NA	41,000	ID	1.0E+9 (D)	1.40E+09	6.70E+10	2.30E+08	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Benzo(a)anthracene (Q)	56-55-3	NA	NLL	NLL	NLV	NLV	ID	20,000	467		< 330	467	< 330	< 330	380	< 330	< 330
Benzo(b)fluoranthene (Q)	205-99-2	NA	NLL	NLL	ID	ID	ID	20,000	344		< 330	344	< 330	< 330	< 330	< 330	< 330
Benzo(k)fluoranthene (Q)	207-08-9	NA	NLL	NLL	NLV	NLV	ID	2.00E+05	326		< 330	< 330	< 330	< 330	326	< 330	< 330
Benzo(g,h,i)perylene	191-24-2	NA	NLL	NLL	NLV	NLV	8.00E+08	2.50E+06	848		< 330	848	< 330	< 330	< 330	< 330	< 330
Benzo(a)pyrene (Q)	50-32-8	NA	NLL	NLL	NLV	NLV	1.50E+06	2,000	509		< 330	509	< 330	< 330	< 330	< 330	< 330
Chrysene (Q)	218-01-9	NA	NLL	NLL	ID	ID	ID	2.00E+06	523		< 330	523	< 330	< 330	372	< 330	< 330
Dibenzo(a,h)anthracene (Q)	53-70-3	NA	NLL	NLL	NLV	NLV	ID	2,000	386		< 330	386	< 330	< 330	< 330	< 330	< 330
Fluoranthene	206-44-0	NA	7.30E+05	5,500	1.0E+9 (D)	7.40E+08	9.30E+09	4.60E+07	691		< 330	348	< 330	< 330	691	< 330	< 330
Fluorene	86-73-7	NA	3.90E+05	5,300	5.80E+08	1.30E+08	9.30E+09	2.70E+07	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene (Q)	193-39-5	NA	NLL	NLL	NLV	NLV	ID	20,000	479		< 330	479	< 330	< 330	< 330	< 330	< 330
2-Methylnaphthalene	91-57-6	NA	57,000	4,200	2.70E+06	1.50E+06	6.70E+08	8.10E+06	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Naphthalene	91-20-3	NA	35,000	730	2.50E+05	3.00E+05	2.00E+08	1.60E+07	<330		< 330	< 330	< 330	< 330	< 330	< 330	< 330
Phenanthrene	85-01-8	NA	56,000	2,100	2.80E+06	1.60E+05	6.70E+06	1.60E+06	351		< 330	351	< 330	< 330	< 330	< 330	< 330
Pyrene	129-00-0	NA	4.80E+05	ID	1.0E+9 (D)	6.50E+08	6.70E+09	2.90E+07	554		< 330	< 330	< 330	< 330	554	< 330	< 330
Volatiles, VOCs, ug/Kg																	
Acetone (I)	67-64-1	NA	15,000	34,000	2.9E+8 (C)	1.30E+08	3.90E+11	2.30E+07	<1000		< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
Benzene (I)	71-43-2	NA	100	4,000 (X)	1,600	13,000	3.80E+08	1.80E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Bromobenzene (I)	108-86-1	NA	550	NA	3.10E+05	4.50E+05	5.30E+08	5.40E+05	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Bromochloromethane	74-97-5	NA	NC	NC	NC	NC	NC	NC	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Bromodichloromethane	75-27-4	NA	1,600 (W)	ID	1,200	9,100	8.40E+07	1.10E+05	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Bromoform	75-25-2	NA	1,600 (W)	ID	1.50E+05	9.00E+05	2.80E+09	8.20E+05	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Bromomethane	74-83-9	NA	200	700	860	11,000	3.30E+08	3.20E+05	<200		< 200	< 200	< 200	< 200	< 200	< 200	< 200
2-Butanone (MEK) (I)	78-93-3	NA	2.60E+05	44,000	5.4E+7 (C)	2.90E+07	6.70E+10	1.2E+8 (C, DD)	<750		< 750	< 750	< 750	< 750	< 750	< 750	< 750



Parameters*						Residential				Sample ID	B-7	B-8	B-9	B-10	B-11	B-12	B-13
	Chemical Abstract Service	Statewide Default Background	Residential Drinking Water Protection	Groundwater Surface Water Interface	Residential Soil Volatilization to Indoor Air	Infinite Source Volatile Soil Inhalation	Residential Particulate Soil Inhalation	Residential Direct Contact	Maximum Concentration	Collection Date	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017
*(Refer to detailed laboratory report for method reference data)	Number	Levels	Criteria & RBSLs	Protection Criteria & RBSLs	Inhalation Criteria & RBSLs	Criteria (VSIC) & RBSLs	Criteria & RBSLs	Criteria & RBSLs	Detected	Depth	5.5-6.0'	5.0-6.0'	1.5-2.0'	0.5-1.5'	1.0-2.0'	2.0-3.0'	2.0-3.0'
n-Butylbenzene	104-51-8	NA	1,600	ID	ID	ID	2.00E+09	2.50E+06	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
sec-Butylbenzene	135-98-8	NA	1,600	ID	ID	ID	4.00E+08	2.50E+06	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
tert-Butylbenzene (I)	98-06-6	NA	1,600	ID	ID	ID	6.70E+08	2.50E+06	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Carbon disulfide (I,R)	75-15-0	NA	16,000	ID	76,000	1.30E+06	4.70E+10	7.2E+6 (C, DD)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
Carbon tetrachloride	56-23-5	NA	100	900 (X)	190	3,500	1.30E+08	96,000	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Chlorobenzene (I)	108-90-7	NA	2,000	500	1.20E+05	7.70E+05	4.70E+09	4.3E+6 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Chloroethane	75-00-3	NA	8,600	22,000 (X)	2.9E+6 (C)	3.00E+07	6.70E+11	2.6E+6 (C)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
Chloroform	67-66-3	NA	1,600 (W)	7,000	7,200	45,000	1.30E+09	1.20E+06	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Chloromethane (I)	74-87-3	NA	5,200	ID	2,300	40,000	4.90E+09	1.6E+6 (C)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
2-Chlorotoluene (I)	95-49-8	NA	3,300	ID	2.70E+05	1.20E+06	4.70E+09	4.5E+6 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
4-Chlorotoluene (I)	106-43-4	NA	NC	NC	NC	NC	NC	NC	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Dibromochloromethane	124-48-1	NA	1,600 (W)	ID	3,900	24,000	1.30E+08	1.10E+05	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,2-Dibromo-3-Chloropropane	96-12-8	NA	10 (M); 4.0	ID	220	260	5.6E+5	4,400 (C)	<10		< 10	< 10	< 10	< 10	< 10	< 10	< 10
Dibromomethane	74-95-3	NA	1,600	NA	ID	ID	ID	2.5E+6 (C)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
1,2-Dichlorobenzene	95-50-1	NA	14,000	280	1.1E+7 (C)	3.90E+07	1.00E+11	1.9E+7 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,3-Dichlorobenzene	541-73-1	NA	170	680	26,000	79,000	2.00E+08	2.0E+5 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,4-Dichlorobenzene	106-46-7	NA	1,700	360	19,000	77,000	4.50E+08	4.00E+05	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Dichlorodifluoromethane	75-71-8	NA	95,000	ID	9.00E+05	5.30E+07	3.30E+12	5.2E+7 (C)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
1,1-Dichloroethane	75-34-3	NA	18,000	15,000	2.30E+05	2.10E+06	3.30E+10	2.7E+7 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,2-Dichloroethane (I)	107-06-2	NA	100	7,200 (X)	2,100	6,200	1.20E+08	91,000	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,1-Dichloroethylene (I)	75-35-4	NA	140	2,600	62	1,100	6.20E+07	2.00E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
cis-1,2-Dichloroethylene	156-59-2	NA	1,400	12,000	22,000	1.80E+05	2.30E+09	2.5E+6 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
trans-1,2-Dichloroethylene	156-60-5	NA	2,000	30,000 (X)	23,000	2.80E+05	4.70E+09	3.8E+6 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,2-Dichloropropane (I)	78-87-5	NA	100	4,600 (X)	4,000	25,000	2.70E+08	1.40E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,3-Dichloropropane	142-28-9	NA	NC	NC	NC	NC	NC	NC	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
2,2-Dichloropropane	594-20-7	NA	NC	NC	NC	NC	NC	NC	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,3-Dichloropropene	542-75-6	NA	170	180 (X)	1,000	18,000	7.80E+08	10,000	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,1-Dichloropropene	563-58-6	NA	NC	NC	NC	NC	NC	NC	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Ethylbenzene (I)	100-41-4	NA	1,500	360	87,000	7.20E+05	1.00E+10	2.2E+7 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Ethylene dibromide (1,2-Dibromoethane)	106-93-4	NA	20 (M); 1.0	110 (X)	670	1,700	1.40E+07	92	<20		< 20	< 20	< 20	< 20	< 20	< 20	< 20
Hexachlorobutadiene	87-68-3	NA	26,000	91	1.30E+05	1.30E+05	1.40E+08	1.00E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
2-Hexanone	591-78-6	NA	20,000	ID	9.90E+05	1.10E+06	2.70E+09	3.2E+7 (C)	<2500		< 2500	< 2500	< 2500	< 2500	< 2500	< 2500	< 2500
Isopropyl benzene	98-82-8	NA	91,000	3,200	4.0E+5 (C)	1.70E+06	5.80E+09	2.5E+7 (C)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
4-Methyl-2-pentanone (MIBK) (I)	108-10-1	NA	36,000	ID	3.7E+7 (C)	4.50E+07	1.40E+11	5.6E+7 (C)	<2500		< 2500	< 2500	< 2500	< 2500	< 2500	< 2500	< 2500
Methyl-tert-butyl ether (MTBE)	1634-04-4	NA	800	1.4E+5 (X)	9.9E+6 (C)	2.50E+07	2.00E+11	1.50E+06	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
Methylene chloride	75-09-2	NA	100	30,000 (X)	45,000	2.10E+05	6.60E+09	1.30E+06	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
2-Methylnaphthalene	91-57-6	NA	57,000	4,200	2.70E+06	1.50E+06	6.70E+08	8.10E+06	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
Naphthalene	91-20-3	NA	35,000	730	2.50E+05	3.00E+05	2.00E+08	1.60E+07	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250

Ab Se				Groundwater	Residential Soil	Residential				Sample ID	B-7	B-8	B-9	B-10	B-11	B-12	B-13
	Chemical Abstract	Statewide Default	Residential Drinking Water	Surface Water Interface	Volatilization to Indoor Air	Infinite Source Volatile Soil	Residential Particulate Soil	Residential Direct Contact	Maximum Concentration	Collection Date	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017	10/12/2017
	Service Number	Background Levels	Protection Criteria & RBSLs	Protection Criteria & RBSLs	Inhalation Criteria & RBSLs	Inhalation Criteria (VSIC) & RBSLs	Inhalation Criteria & RBSLs	Criteria & RBSLs	Detected	Depth	5.5-6.0'	5.0-6.0'	1.5-2.0'	0.5-1.5'	1.0-2.0'	2.0-3.0'	2.0-3.0'
n-Propylbenzene (I)	103-65-1	NA	1,600	ID	ID	ID	1.30E+09	2.50E+06	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Styrene	100-42-5	NA	2,700	2,100 (X)	2.50E+05	9.70E+05	5.50E+09	4.00E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,1,1,2-Tetrachloroethane	630-20-6	NA	1,500	ID	6,200	36,000	4.20E+08	4.8E+5 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,1,2,2-Tetrachloroethane	79-34-5	NA	170	1,600 (X)	4,300	10,000	5.40E+07	53,000	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Tetrachloroethylene	127-18-4	NA	100	1,200 (X)	11,000	1.7E+5	2.7E+9	2.0E+5 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Tetrahydrofuran	109-99-9	NA	1,900	2.2E+5 (X)	1.30E+06	1.3E+7	3.9E+11	2.90E+06	<1000		< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
Toluene (I)	108-88-3	NA	16,000	5,400	3.3E+5 (C)	2.80E+06	2.70E+10	5.0E+7 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,2,3-Trichlorobenzene	87-61-6	NA	NC	NC	NC	NC	NC	NC	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
1,2,4-Trichlorobenzene	120-82-1	NA	4,200	5,900 (X)	9.6E+6 (C)	2.80E+07	2.50E+10	9.9E+5 (DD)	<250		< 250	< 250	< 250	< 250	< 250	< 250	< 250
1,1,1-Trichloroethane	71-55-6	NA	4,000	1,800	2.50E+05	3.80E+06	6.70E+10	5.0E+8 (C)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
1,1,2-Trichloroethane	79-00-5	NA	100	6,600 (X)	4,600	17,000	1.90E+08	1.80E+05	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Trichloroethylene	79-01-6	NA	100	4,000 (X)	1,000	11,000	1.3E+8	1.1E+5 (DD)	<50		< 50	< 50	< 50	< 50	< 50	< 50	< 50
Trichlorofluoromethane	75-69-4	NA	52,000	NA	2.8E+6 (C)	9.20E+07	3.80E+12	7.9E+7 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,2,3-Trichloropropane	96-18-4	NA	840	NA	4,000	9,200	2.00E+07	1.3E+6 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,2,4-Trimethylbenzene (I)	95-63-6	NA	2,100	570	4.3E+6 (C)	2.10E+07	8.20E+10	3.2E+7 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,3,5-Trimethylbenzene (I)	108-67-8	NA	1,800	1,100	2.6E+6 (C)	1.60E+07	8.20E+10	3.2E+7 (C)	<100		< 100	< 100	< 100	< 100	< 100	< 100	< 100
Vinyl acetate (I)	108-05-4	NA	13,000	NA	7.90E+05	1.70E+06	1.30E+10	5.8E+6 (C,DD)	<5000		< 5000	< 5000	< 5000	< 5000	< 5000	< 5000	< 5000
Vinyl chloride	75-01-4	NA	40	260 (X)	270	4,200	3.50E+08	3,800	<40		< 40	< 40	< 40	< 40	< 40	< 40	< 40
Xylenes (I)	1330-20-7	NA	5,600	820	6.3E+6 (C)	4.60E+07	2.90E+11	4.1E+8 (C)	<150		< 150	< 150	< 150	< 150	< 150	< 150	< 150

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS VOCS, PNAS, PCBS, AND MICHIGAN 10 METALS 108 ADAS STREET, BAY CITY, MICHIGAN PM PROJECT #01-12077-0-0003

			1																							$\overline{}$
Volatile Organic Compounds (VOCs), Polynuclear Aromatic Compounds (PNAs), Polychlorinated Biphenyls (PCBs), and Michigan 10 Metals (µg/Kg)		VOCs	Anthracene	Benzo (a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Fluoranthene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene	Other PNAs	PCBs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc	
Chemic	ical Abstract Service Number	(CAS#)	Various	120127	56553	50328	205992	191242	207089	218019	206440	193395	85018	129000	Various	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666
Sample ID	Sample Date	Sample Depth (feet bgs)	VOCs						PI	lAs						PCBs					Michigan	10 Metals				
SB-1	07/06/2020	1.0-2.0	<mdl< th=""><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><300</th><th><mdl< th=""><th><330</th><th>760</th><th>93,200</th><th><200</th><th>11,800</th><th>6,580</th><th>5,940</th><th><50</th><th><400</th><th><200</th><th>14,200</th></mdl<></th></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< th=""><th><330</th><th>760</th><th>93,200</th><th><200</th><th>11,800</th><th>6,580</th><th>5,940</th><th><50</th><th><400</th><th><200</th><th>14,200</th></mdl<>	<330	760	93,200	<200	11,800	6,580	5,940	<50	<400	<200	14,200
SB-2	07/06/2020	1.0-2.0	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>890</td><td>52,000</td><td><200</td><td>9,390</td><td>7,390</td><td>5,910</td><td>61</td><td><400</td><td><200</td><td>15,800</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>890</td><td>52,000</td><td><200</td><td>9,390</td><td>7,390</td><td>5,910</td><td>61</td><td><400</td><td><200</td><td>15,800</td></mdl<>	<330	890	52,000	<200	9,390	7,390	5,910	61	<400	<200	15,800
SB-2	07/06/2020	6.0-7.0	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>3,440</td><td>62,300</td><td><200</td><td>9,950</td><td>11,100</td><td>4,180</td><td><50</td><td>880</td><td><200</td><td>18,600</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>3,440</td><td>62,300</td><td><200</td><td>9,950</td><td>11,100</td><td>4,180</td><td><50</td><td>880</td><td><200</td><td>18,600</td></mdl<>	<330	3,440	62,300	<200	9,950	11,100	4,180	<50	880	<200	18,600
SB-2	07/06/2020	16.5-17.5	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>2,170</td><td>18,700</td><td><200</td><td>9,560</td><td>8,670</td><td>3,030</td><td><50</td><td>680</td><td><200</td><td>18,600</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>2,170</td><td>18,700</td><td><200</td><td>9,560</td><td>8,670</td><td>3,030</td><td><50</td><td>680</td><td><200</td><td>18,600</td></mdl<>	<330	2,170	18,700	<200	9,560	8,670	3,030	<50	680	<200	18,600
SB-3	SB-3 07/06/2020 1.0-2.0			<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>950</td><td>30,700</td><td><200</td><td>7,260</td><td>6,780</td><td>8,610</td><td><50</td><td>410</td><td><200</td><td>16,200</td></mdl<>	<330	950	30,700	<200	7,260	6,780	8,610	<50	410	<200	16,200
SB-3 07/06/2020 6.5-7.5		<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>1,630</td><td>29,200</td><td><200</td><td>6,090</td><td>6,630</td><td>2,920</td><td><50</td><td>720</td><td><200</td><td>10,900</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>1,630</td><td>29,200</td><td><200</td><td>6,090</td><td>6,630</td><td>2,920</td><td><50</td><td>720</td><td><200</td><td>10,900</td></mdl<>	<330	1,630	29,200	<200	6,090	6,630	2,920	<50	720	<200	10,900	
SB-4 07/06/2020 1.0-2.0		1.0-2.0	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>1,660</td><td>52,100</td><td><200</td><td>9,080</td><td>8,430</td><td>9,520</td><td>59</td><td>840</td><td><200</td><td>30,500</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>1,660</td><td>52,100</td><td><200</td><td>9,080</td><td>8,430</td><td>9,520</td><td>59</td><td>840</td><td><200</td><td>30,500</td></mdl<>	<330	1,660	52,100	<200	9,080	8,430	9,520	59	840	<200	30,500
SB-5 07/06/2020 4.5-5.5		<mdl< td=""><td>400</td><td>1,400</td><td>1,100</td><td>2,000</td><td>700</td><td>2,100</td><td>1,500</td><td>3,000</td><td>600</td><td>2,300</td><td>3,000</td><td><mdl< td=""><td><330</td><td>4,180</td><td>78,800</td><td>340</td><td>10,500</td><td>26,800</td><td>131,000</td><td>9,667</td><td>1,180</td><td><200</td><td>149,000</td></mdl<></td></mdl<>	400	1,400	1,100	2,000	700	2,100	1,500	3,000	600	2,300	3,000	<mdl< td=""><td><330</td><td>4,180</td><td>78,800</td><td>340</td><td>10,500</td><td>26,800</td><td>131,000</td><td>9,667</td><td>1,180</td><td><200</td><td>149,000</td></mdl<>	<330	4,180	78,800	340	10,500	26,800	131,000	9,667	1,180	<200	149,000	
SB-5 (Replicate 1)	07/06/2020	4.5-5.5	NA	400	1,100	800	1,400	500	1,500	1,300	2,300	400	2,000	2,200	<mdl< td=""><td>NA</td><td>2,480</td><td>75,900</td><td>450</td><td>7,900</td><td>31,400</td><td>185,000</td><td>3,143</td><td>740</td><td>280</td><td>152,000</td></mdl<>	NA	2,480	75,900	450	7,900	31,400	185,000	3,143	740	280	152,000
SB-5 (Replicate 2)	07/06/2020	4.5-5.5	NA	<300	<300	<300	300	<300	300	<300	400	<300	300	400	<mdl< td=""><td>NA</td><td>1,560</td><td>60,600</td><td>230</td><td>6,190</td><td>21,900</td><td>81,700</td><td>3,130</td><td><400</td><td><200</td><td>104,000</td></mdl<>	NA	1,560	60,600	230	6,190	21,900	81,700	3,130	<400	<200	104,000
SB-6	07/06/2020	1.0-2.0	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>3,850</td><td>46,500</td><td><200</td><td>11,300</td><td>12,800</td><td>5,390</td><td><50</td><td>870</td><td><200</td><td>24,400</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>3,850</td><td>46,500</td><td><200</td><td>11,300</td><td>12,800</td><td>5,390</td><td><50</td><td>870</td><td><200</td><td>24,400</td></mdl<>	<330	3,850	46,500	<200	11,300	12,800	5,390	<50	870	<200	24,400
SB-6	07/06/2020	8.5-9.5	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td><330</td><td>2,180</td><td>29,000</td><td><200</td><td>7,720</td><td>7,940</td><td>3,190</td><td><50</td><td>640</td><td><200</td><td>16,200</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td><330</td><td>2,180</td><td>29,000</td><td><200</td><td>7,720</td><td>7,940</td><td>3,190</td><td><50</td><td>640</td><td><200</td><td>16,200</td></mdl<>	<330	2,180	29,000	<200	7,720	7,940	3,190	<50	640	<200	16,200
SB-7	07/06/2020	4.0-5.0	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-7	07/06/2020	12.5-13.5	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-8	07/06/2020	10.5-11.5	<mdl< td=""><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><300</td><td><mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<></td></mdl<>	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cleanup Criteria Requirements for Response Activity (R 299.1 - R 299.50) Generic Soil Cleanup Criteria Tables 2 and 3: Residential and Non-Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels, December 30, 2013 Draft EGLE Volatilization to Indoor Air Pathway Screening Levels Residential (µg/Kg)																										
Statewide Default Backgroun	nd Levels		NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.	5.800	75,000	1,200	18.000	32,000	21,000	130	410	1,000	47,000
Drinking Water Protection (R			Various	41.000	NLL	NLL NLL	NLL	NA. NLL	NLL NLL	NLL NLL	7.30E+05	NLL	56.000	4.80E+05	Various	NA NLL	4,600	1.30E+06	6.000	30,000	5.80E+06	7.00E+05	1,700	4.000	4,500	2,40E+06
Groundwater Surface Water			Various	ID.	NLL	NLL	NLL	NLL	NLL	NLL	5.500	NII	2.100	ID.	Various	NLL	4,600	2.0E+05(G)	3.6E+05(G,X)	3.300	1.7E+06(G)	5.3E+07(G,X)	50 (M): 1.2	400	100 (M): 27	3.0E+05(G)
Soil Volatilization to Indoor A			Various	1.0E+9 (D)	NLV	NLV	ID	NLV	NLV	ID	1.0E+9 (D)	NLV	2.8E+06	1.0E+9 (D)	Various	1.2E+03	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV
-	Volatile Soil Inhalation (Res V	SI)	Various	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	7.40E+08	NLV	1.60E+05	6.5E+08	Various	2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI for 5 N	Meter Source Thickness		Various	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	7.4E+08	NLV	1.60E+05	6.5E+08	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI for 2 M	Meter Source Thickness		Various	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	7.4E+08	NLV	1.60E+05	6.5E+08	Various	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Particulate Soil I	Inhalation (Res PSI)		Various	6.7E+10	ID	1.5E+06	ID	8.0E+08	ID	ID	9.3E+09	ID	6.7E+06	6.7E+09	Various	5.2E+06	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	2.00E+07	1.30E+08	6.70E+06	ID
Direct Contact (Res DC)			Various	2.3E+08	20,000	2,000	20,000	2.5E+06	2.00E+05	2.0E+06	4.6E+07	20,000	1.6E+06	2.9E+07	Various	(T)	7,600	3.70E+07	5.50E+05	2.50E+06	2.00E+07	4.00E+05	1.60E+05	2.60E+06	2.50E+06	1.70E+08
											lonresidentia	(μg/Kg)														
Drinking Water Protection (N	Nonres DWP)		Various	41,000	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	NLL	1.60E+05	4.80E+05	Various	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06
Soil Volatilization to Indoor A		. 1/00	Various	1.0E+9 (D)	NLV	NLV	ID	NLV	NLV	ID	1.0E+9 (D)	NLV	5.1E+06	1.0E+9 {D}	Various	1.6E+07	NLV	NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV
Ambient Air Infinite Source Volatile Soil Inhalation (Nonres VSI)			Various Various	1.6E+09 1.6E+09	NLV	NLV	ID ID	NLV	NLV	ID ID	8.9E+08	NLV NLV	1.90E+05	7.8E+08	Various	8.10E+05	NLV NLV	NLV	NLV NLV	NLV NLV	NLV	NLV NLV	62,000	NLV NLV	NLV NLV	NLV NLV
Ambient Air Finite VSI for 5 Meter Source Thickness Ambient Air Finite VSI for 2 Meter Source Thickness			-		NLV	NLV		NLV	NLV		8.8E+08			7.8E+08	Various	2.8E+07		NLV		-	NLV					
Ambient Air Pinite VSI for 2 Meter Source Inickness Ambient Air Particulate Soil Inhalation (Nonres PSI)			Various Various	1.6E+09 2.9E+10	NLV ID	NLV 1.9E+06	ID ID	NLV 3.5E+08	NLV ID	ID ID	8.8E+08 4.1E+09	NLV ID	1.90E+05	7.8E+08 2.9E+09	Various Various	2.8E+07 6.5E+06	NLV 9.10F+05	NLV 1.50E+08	NLV 2.20E+06	NLV 2.40E+05	NLV 5.90E+07	NLV 4.40F+07	62,000 8.80E+06	NLV 5.90E+07	NLV 2.90E+06	NLV ID
Direct Contact (Nonres DC)	iiiiaiauon (Nonres PSI)	Various	2.9E+10 7.3E+08	80,000	1.9E+06 8.000	80,000	3.5E+08 7.0E+06	8.00E+05	8.0E+06	4.1E+09 1.3E+08	80.000	5.2E+06	2.9E+09 8.4E+07	Various		9.10E+05 37,000	1.50E+08 1.30E+08	2.20E+06 2.10E+06	9.20E+06	5.90E+07 7.30E+07	4.40E+07 9.0E+5 (DD)	5.80E+06	5.90E+07 9.60E+06	9.00E+06	6.30E+08	
Direct Contact (Norres DC)												2.100+00	9.202+00	7.30E+07	J.UE+0 (DD)	0.002+00	3.002+00	3.000+00	0.30E+00							
Soil Saturation Concentratio	on Screening Levels (Csat)		Various	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA	NA	Various	NA	NA.	NA.	NA	NA.	NA.	NA	NA.	NA.	NA	NA NA
Residential Volatilization to I	Various	1.3E+07	1.6E+05 (MM)	NA	NA	NA .	NA.	NA.	NA.	NA.	1.7E+03	2.5E+07	Various	ID	NA.	NA.	NA.	NA	NA	NA	22	NA	NA	NA NA		
	to Indoor Air Pathway Screen		Various	2.2E+08	1.1E+07	NA	NA	NA	NA.	NA.	NA.	NA.	2.9E+04	4.4E+08	Various	ID	NA.	NA.	NA.	NA	NA	NA	390	NA	NA	NA
																								_		

Applicable Criterion/RBSL Exceeded

BOLD Value Exceeds Applicable Criterion/RBSL

Value Exceeds Applicable Screening Level
underline Applicable Screening Level Exceeded

bgs Below Ground Surface (feet)

ug/Kg Micrograms Per Kilogram

100 (M) Other Alpha notation, please refer to MDEQ Footnotes R 299.49 Footnotes for Generic Cleanup Crtieria Tables, December 30, 2013

NA Not Applicable

NL Not Listed

NLL Not Likely to Leach

NLV Not Likely to Volatilize

ID Insufficient Data

TABLE 2 SUMMARY OF SOIL GAS ANALYTICAL RESULTS VOCs 108 ADAMS STREET, BAY CITY, MICHIGAN PM PROJECT #01-12077-1-0003

Volati	Acetone	Benzene	Carbon disulfide	Cyclohexane	Ethanol	Ethylbenzene	Heptane	Hexane	Methyl ethyl ketone	2,2,4-Trimethylpentane	Tetrahydrofuran	Toluene	Xylenes (total)	Other VOCs		
Chemica	I Abstract Service Numbe		67641	71432	75150	110827	64175	100414	142825	110543	78933	540841	109999	108883	1330207	Various
Sample ID	Sample Date	Sample Depth (feet bgs)							vo	Cs						
SG-1	07/06/2020	5.0	740	32	28	21	55	22	41	67	59	14	12	75	96	<mdl< th=""></mdl<>
	Draft EGLE Volatilization to Indoor Air Pathway Screening Levels															
	MDEQ Residential Volatilization to Indoor Air Interim Action Screening Levels (August 2017) (μg/m³)															
Residential Volatilization	to Indoor Air Pathway So	creening Level (VIAP)	1.0E+06 (EE)	110	24,000	210,000	6.3E+05 (EE)	340	120,000	24,000	NL	ID	70,000	170,000	7,600 (J)	Various
Nonresidential Volatilizat	tion to Indoor Air Pathwa	Screening Level (VIAP)	1.0E+06 (EE)	260	36,000	310,000	6.3E+05 (EE)	800	180,000	36,000	NL	ID	100,000	2.5E+05 (EE)	11,000 (J)	Various

Screening Level Exceeded

BOLD Value Exceeds Applicable Screening Level

<MDL Not detected at or above laboratory reporting or detection limits

NA Not Available/Not Applicable

bgs Below Ground Surface

NL Not Listed

μg/m³ micrograms per cubic meter